[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Data-driven soliton solutions and parameter identification of the nonlocal nonlinear Schrödinger equation using the physics-informed neural network algorithm with parameter regularization

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a systematic study of data-driven soliton solutions and parameter identification for the nonlocal nonlinear Schrödinger (NLS) equation by employing the physics-informed neural network (PINN) algorithm with parameter regularization. This nonlocal NLS equation is obtained from the classical Manakov system under the special reduction that two components are related by a parity symmetry. Compared with the PINN structure of the local coupled NLS system, a relatively simple neural network with parameter regularization is constructed with fewer physical constraints of governing equations and less objective optimization by introducing the nonlocal connection between two components. Numerous data-driven local wave solutions including one- and two-soliton solutions with four collision patterns are accurately simulated and comparatively analyzed with relative and absolute errors. These numerical results demonstrate that the established PINN is able to predict one- and two-soliton solutions with high precision and accuracy. For the parameter identification of the nonlocal NLS equation, nonlinear coefficients are recognized through the known training data with different noise intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  ADS  Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  3. Voulodimos, A., Doulamis, N., Doulamis, A., Eftychios, P., et al.: Deep learning for computer vision: a brief review. Comput. Intel. Neurosci. 1, 7068349 (2018)

    Google Scholar 

  4. Hirschberg, J., Manning, C.D.: Advances in natural language processing. Science 349, 261–266 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)

    Article  Google Scholar 

  6. Dissanayake, M., Phan-Thien, N.: Neural-network-based approximations for solving partial differential equations. Commun. Numer. Methods Eng. 10, 195–201 (1994)

    Article  Google Scholar 

  7. Rackauckas, C., Ma, Y., Martensen, J., et al.: Universal differential equations for scientific machine learning (2021). arXiv:2001.04385

  8. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021)

    Article  Google Scholar 

  10. Lu, L., Meng, X., Mao, Z., George, E.K.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63, 208–228 (2021)

    Article  MathSciNet  Google Scholar 

  11. Pang, G., Lu, L., Karniadakis, G.E.: fPINNs: fractional physics-informed neural networks. SIAM J. Sci. Comput. 41, A2603–A2626 (2019)

    Article  MathSciNet  Google Scholar 

  12. Zhang, D., Lu, L., Guo, L., Karniadakis, G.E.: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. J. Comput. Phys. 397, 108850 (2019)

    Article  MathSciNet  Google Scholar 

  13. Zhang, D., Guo, L., Karniadakis, G.E.: Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks. SIAM J. Sci. Comput. 42, A639–A665 (2020)

    Article  MathSciNet  Google Scholar 

  14. Ablowitz, M.A., Clarkson, P.A.: Solitons. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  15. Hirota, R.: Direct Methods in Soliton Theory. In: Bullough, R.K., Caudrey, P.J. (eds.) Solitons. Topics in Current Physics, vol. 17. Springer, Berlin (1980)

    Google Scholar 

  16. Geng, X.G., Tam, H.W.: Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations. J. Phys. Soc. Jpn. 68, 1508 (1999)

    Article  ADS  Google Scholar 

  17. Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

    Book  Google Scholar 

  18. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Berlin (1993)

    Book  Google Scholar 

  19. Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaevskii, L.P.: The Theory of Solitons: The Inverse Scattering Method. Consultants Bureau Press (1984)

    Google Scholar 

  20. Pu, J.C., Chen, Y.: Nonlocal symmetries, Bäcklund transformation and interaction solutions for the integrable Boussinesq equation. Mod. Phys. Lett. B 34(26), 1–12 (2020)

    Article  Google Scholar 

  21. Zhao, Z., Yang, X., Li, W., Li, B.: Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev-Petviashvili equation. Chin. Phys. B 28, 110201 (2019)

    Article  ADS  Google Scholar 

  22. Lin, S.N., Chen, Y.: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions. J. Comput. Phys. 457, 111053 (2022)

    Article  MathSciNet  Google Scholar 

  23. Fang, Y., Wu, G.Z., Kudryashov, N.A., Wang, Y.Y., Dai, C.Q.: Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method. Chaos Solitons Fractals 158, 112118 (2022)

    Article  MathSciNet  Google Scholar 

  24. Zhou, Z.J., Wang, L., Yan, Z.Y.: Data-driven discoveries of Bäcklund transformations and soliton evolution equations via deep neural network learning schemes. Phys. Lett. A 450, 128373 (2022)

    Article  Google Scholar 

  25. Lin, S.N., Chen, Y.: Physics-informed neural network methods based on Miura transformations and discovery of new localized wave solutions. Physica D 445, 133629 (2023)

    Article  MathSciNet  Google Scholar 

  26. Li, J., Chen, Y.: A deep learning method for solving third-order nonlinear evolution equations. Commun. Theor. Phys. 72, 115003 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zhu, J., Chen, Y.: Data-driven solutions and parameter discovery of the nonlocal mKdV equation via deep learning method. Nonlinear Dyn. 111, 8397–8417 (2023)

    Article  Google Scholar 

  28. Li, J., Chen, J., Li, B.: Gradient-optimized physics-informed neural networks (GOPINNs): a deep learning method for solving the complex modified KdV equation. Nonlinear Dyn 107, 781–792 (2022)

    Article  Google Scholar 

  29. Tian, S., Niu, Z., Li, B.: Mix-training physics-informed neural networks for high-order rogue waves of cmKdV equation. Nonlinear Dyn. 111, 16467–16482 (2023)

    Article  Google Scholar 

  30. Zhou, H., Pu, J., Chen, Y.: Data-driven forward-inverse problems for the variable coefficients Hirota equation using deep learning method. Nonlinear Dyn. 111, 14667–14693 (2023)

    Article  Google Scholar 

  31. Pu, J., Li, J., Chen, Y.: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 105, 1723–1739 (2021)

    Article  Google Scholar 

  32. Pu, J.C., Li, J., Chen, Y.: Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints. Chin. Phys. B 30, 060202 (2021)

    Article  ADS  Google Scholar 

  33. Li, J.H., Li, B.: Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation. Chaos Solitons Fractals 164, 112712 (2022)

    Article  Google Scholar 

  34. Wu, G.Z., Fang, Y., Kudryashov, N.A., Wang, Y.Y., Dai, C.Q.: Prediction of optical solitons using an improved physics-informed neural network method with the conservation law constraint. Chaos Solitons Fractals 159, 112143 (2022)

    Article  MathSciNet  Google Scholar 

  35. Peng, W.Q., Pu, J.C., Chen, Y.: PINN deep learning for the Chen-Lee-Liu equation: rogue wave on the periodic background. Commun. Nonlinear Sci. Numer. Simul. 105, 106067 (2022)

    Article  MathSciNet  Google Scholar 

  36. Pu, J.C., Li, J., Chen, Y.: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 105, 1723–1739 (2021)

    Article  Google Scholar 

  37. Mo, Y.F., Ling, L.M., Zeng, D.L.: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm. Phys. Lett. A 421, 127739 (2022)

    Article  Google Scholar 

  38. Pu, J.C., Chen, Y.: Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach. Chaos Solitons Fractals 160, 112182 (2022)

    Article  MathSciNet  Google Scholar 

  39. Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022)

    Article  Google Scholar 

  40. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  ADS  Google Scholar 

  41. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2017)

    Article  MathSciNet  Google Scholar 

  42. Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  43. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  44. Lou, S.Y.: Alice-Bob systems, \(P_s-T_d-C\) symmetry invariant and symmetry breaking soliton solutions. J. Math. Phys. 59, 083507 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  45. Yang, B., Yang, J.: Transformations between nonlocal and local integrable equations. Stud. Appl. Math. 140, 178–201 (2017)

    Article  MathSciNet  Google Scholar 

  46. Yan, Z.Y.: A novel hierarchy of two-family-parameter equations: local, nonlocal, and mixed-local-nonlocal vector nonlinear Schrödinger equations. Appl. Math. Lett. 79, 123–130 (2018)

    Article  MathSciNet  Google Scholar 

  47. Xu, S., Li, J.H., Hou, Y.H., He, J.R., Fan, Z., Zhao, Y., Dong, L.W.: Vortex light bullets in Rydberg atoms trapped in twisted PT-symmmetric waveguide arrays. Phys. Rev. A 110, 023508 (2024)

    Article  Google Scholar 

  48. Zhong, W.P., Yang, Z.P., Belić, M., Zhong, W.Y.: Breather solutions of the nonlocal nonlinear self-focusing Schrödinger equation. Phys. Lett. A 395, 127228 (2021)

    Article  Google Scholar 

  49. Zhong, W.P., Belić, M.R., Huang, T.W.: Two-dimensional accessible solitons in PT-symmetric potentials. Nonlinear Dyn. 70, 2027–2034 (2012)

    Article  MathSciNet  Google Scholar 

  50. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete \(\cal{PT} \) symmetric model. Phys. Rev. E 90, 032912 (2014)

    Article  ADS  Google Scholar 

  51. Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 62, 480–488 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  52. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385–5409 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  53. Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Phys. Rev. E 98, 042202 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  54. Li, G., Zhao, Z., Jiang, X., Chen, Z., Liu, B., Malomed, B.A., Li, Y.: Strongly anisotropic vortices in dipolar quantum droplets. Phys. Rev. Lett. 133, 053804 (2024)

    Article  MathSciNet  Google Scholar 

  55. Li, G., Jiang, X., Liu, B., Chen, Z., Malomed, B.A., Li, Y.: Two-dimensional anisotropic vortex quantum droplets in dipolar Bose-Einstein condensates. Front. Phys. 19, 22202 (2024)

    Article  ADS  Google Scholar 

  56. Zhong, W.P., Belić, M.: Traveling wave and soliton solutions of coupled nonlinear Schrödinger equations with harmonic potential and variable coefficients. Phys. Rev. E. 82, 047601 (2010)

    Article  ADS  Google Scholar 

  57. Zhong, W.P., Belić, M., Malomed, B.A.: Rogue waves in a two-component Manakov system with variable coefficients and an external potential. Phys. Rev. E 92, 053201 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  58. Guo, Y.W., Xu, S.L., He, J.R., Deng, P., Belić, M.R., Zhao, Y.: Transient optical response of cold Rydberg atoms with electromagnetically induced transparency. Phys. Rev. A 101, 023806 (2020)

    Article  ADS  Google Scholar 

  59. Li, H., Xu, S.L., Belić, M.R., Cheng, J.X.: Three-dimensional solitons in Bose-Einstein condensates with spin-orbit coupling and Bessel optical lattices. Phys. Rev. A 98, 033827 (2018)

    Article  ADS  Google Scholar 

  60. Li, B.B., Zhao, Y., Xu, S.L.: Two-dimensional gap solitons in parity-time symmetry Moiré optical lattices with Rydberg–Rydberg interaction. Chin. Phys. Lett. 40, 044201 (2023)

    Article  ADS  Google Scholar 

  61. Liao, Q.Y., Hu, H.J., Chen, M.W.: Two-dimensional spatial solitons in optical lattices with Rydberg–Rydberg interaction. Acta Phys. Sin. 72, 104202 (2023)

    Article  Google Scholar 

  62. Kanna, T., Lakshmanan, M.: Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86(22), 5043 (2001)

    Article  ADS  Google Scholar 

  63. Vijayajayanthi, M., Kanna, T., Lakshmanan, M.: Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations. Phys. Rev. A 77(1), 013820 (2008)

    Article  ADS  Google Scholar 

  64. Feng, B.F.: General N-soliton solution to a vector nonlinear Schrödinger equation. J. Phys. A Math. Theor. 47(35), 355203 (2014)

    Article  Google Scholar 

  65. Ling, L., Zhao, L.C., Guo, B.: Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations. Nonlinearity 28(9), 3243 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  66. Ohta, Y., Wang, D.S., Yang, J.: General N-dark-dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127(4), 345–371 (2011)

    Article  MathSciNet  Google Scholar 

  67. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Soliton interactions in the vector NLS equation. Inverse Probl. 20(4), 1217 (2004)

  68. Chen, J.C., Yan, Q.X., Zhang, H.: Multiple bright soliton solutions of a reverse-space nonlocal nonlinear Schrödinger equation. Appl. Math. Lett. 106, 106375 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (Grant Nos.12375003 and 12171217), the Zhejiang Province Natural Science Foundation of China (Grant No.2022SJGYZC01) and Zhejiang Sci-Tech University Excellent Postgraduate Dissertation Cultivation Fund Project (Grant No.LW-YP2024015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Chen, Y., Cheng, L. et al. Data-driven soliton solutions and parameter identification of the nonlocal nonlinear Schrödinger equation using the physics-informed neural network algorithm with parameter regularization. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-10562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-10562-6

Keywords

Navigation