Abstract
This paper presents a systematic study of data-driven soliton solutions and parameter identification for the nonlocal nonlinear Schrödinger (NLS) equation by employing the physics-informed neural network (PINN) algorithm with parameter regularization. This nonlocal NLS equation is obtained from the classical Manakov system under the special reduction that two components are related by a parity symmetry. Compared with the PINN structure of the local coupled NLS system, a relatively simple neural network with parameter regularization is constructed with fewer physical constraints of governing equations and less objective optimization by introducing the nonlocal connection between two components. Numerous data-driven local wave solutions including one- and two-soliton solutions with four collision patterns are accurately simulated and comparatively analyzed with relative and absolute errors. These numerical results demonstrate that the established PINN is able to predict one- and two-soliton solutions with high precision and accuracy. For the parameter identification of the nonlocal NLS equation, nonlinear coefficients are recognized through the known training data with different noise intensity.
Similar content being viewed by others
Data availability
Enquiries about data availability should be directed to the authors.
References
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)
Voulodimos, A., Doulamis, N., Doulamis, A., Eftychios, P., et al.: Deep learning for computer vision: a brief review. Comput. Intel. Neurosci. 1, 7068349 (2018)
Hirschberg, J., Manning, C.D.: Advances in natural language processing. Science 349, 261–266 (2015)
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)
Dissanayake, M., Phan-Thien, N.: Neural-network-based approximations for solving partial differential equations. Commun. Numer. Methods Eng. 10, 195–201 (1994)
Rackauckas, C., Ma, Y., Martensen, J., et al.: Universal differential equations for scientific machine learning (2021). arXiv:2001.04385
Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)
Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021)
Lu, L., Meng, X., Mao, Z., George, E.K.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63, 208–228 (2021)
Pang, G., Lu, L., Karniadakis, G.E.: fPINNs: fractional physics-informed neural networks. SIAM J. Sci. Comput. 41, A2603–A2626 (2019)
Zhang, D., Lu, L., Guo, L., Karniadakis, G.E.: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. J. Comput. Phys. 397, 108850 (2019)
Zhang, D., Guo, L., Karniadakis, G.E.: Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks. SIAM J. Sci. Comput. 42, A639–A665 (2020)
Ablowitz, M.A., Clarkson, P.A.: Solitons. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)
Hirota, R.: Direct Methods in Soliton Theory. In: Bullough, R.K., Caudrey, P.J. (eds.) Solitons. Topics in Current Physics, vol. 17. Springer, Berlin (1980)
Geng, X.G., Tam, H.W.: Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations. J. Phys. Soc. Jpn. 68, 1508 (1999)
Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)
Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Berlin (1993)
Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaevskii, L.P.: The Theory of Solitons: The Inverse Scattering Method. Consultants Bureau Press (1984)
Pu, J.C., Chen, Y.: Nonlocal symmetries, Bäcklund transformation and interaction solutions for the integrable Boussinesq equation. Mod. Phys. Lett. B 34(26), 1–12 (2020)
Zhao, Z., Yang, X., Li, W., Li, B.: Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev-Petviashvili equation. Chin. Phys. B 28, 110201 (2019)
Lin, S.N., Chen, Y.: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions. J. Comput. Phys. 457, 111053 (2022)
Fang, Y., Wu, G.Z., Kudryashov, N.A., Wang, Y.Y., Dai, C.Q.: Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method. Chaos Solitons Fractals 158, 112118 (2022)
Zhou, Z.J., Wang, L., Yan, Z.Y.: Data-driven discoveries of Bäcklund transformations and soliton evolution equations via deep neural network learning schemes. Phys. Lett. A 450, 128373 (2022)
Lin, S.N., Chen, Y.: Physics-informed neural network methods based on Miura transformations and discovery of new localized wave solutions. Physica D 445, 133629 (2023)
Li, J., Chen, Y.: A deep learning method for solving third-order nonlinear evolution equations. Commun. Theor. Phys. 72, 115003 (2020)
Zhu, J., Chen, Y.: Data-driven solutions and parameter discovery of the nonlocal mKdV equation via deep learning method. Nonlinear Dyn. 111, 8397–8417 (2023)
Li, J., Chen, J., Li, B.: Gradient-optimized physics-informed neural networks (GOPINNs): a deep learning method for solving the complex modified KdV equation. Nonlinear Dyn 107, 781–792 (2022)
Tian, S., Niu, Z., Li, B.: Mix-training physics-informed neural networks for high-order rogue waves of cmKdV equation. Nonlinear Dyn. 111, 16467–16482 (2023)
Zhou, H., Pu, J., Chen, Y.: Data-driven forward-inverse problems for the variable coefficients Hirota equation using deep learning method. Nonlinear Dyn. 111, 14667–14693 (2023)
Pu, J., Li, J., Chen, Y.: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 105, 1723–1739 (2021)
Pu, J.C., Li, J., Chen, Y.: Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints. Chin. Phys. B 30, 060202 (2021)
Li, J.H., Li, B.: Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation. Chaos Solitons Fractals 164, 112712 (2022)
Wu, G.Z., Fang, Y., Kudryashov, N.A., Wang, Y.Y., Dai, C.Q.: Prediction of optical solitons using an improved physics-informed neural network method with the conservation law constraint. Chaos Solitons Fractals 159, 112143 (2022)
Peng, W.Q., Pu, J.C., Chen, Y.: PINN deep learning for the Chen-Lee-Liu equation: rogue wave on the periodic background. Commun. Nonlinear Sci. Numer. Simul. 105, 106067 (2022)
Pu, J.C., Li, J., Chen, Y.: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 105, 1723–1739 (2021)
Mo, Y.F., Ling, L.M., Zeng, D.L.: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm. Phys. Lett. A 421, 127739 (2022)
Pu, J.C., Chen, Y.: Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach. Chaos Solitons Fractals 160, 112182 (2022)
Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022)
Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)
Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2017)
Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)
Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)
Lou, S.Y.: Alice-Bob systems, \(P_s-T_d-C\) symmetry invariant and symmetry breaking soliton solutions. J. Math. Phys. 59, 083507 (2018)
Yang, B., Yang, J.: Transformations between nonlocal and local integrable equations. Stud. Appl. Math. 140, 178–201 (2017)
Yan, Z.Y.: A novel hierarchy of two-family-parameter equations: local, nonlocal, and mixed-local-nonlocal vector nonlinear Schrödinger equations. Appl. Math. Lett. 79, 123–130 (2018)
Xu, S., Li, J.H., Hou, Y.H., He, J.R., Fan, Z., Zhao, Y., Dong, L.W.: Vortex light bullets in Rydberg atoms trapped in twisted PT-symmmetric waveguide arrays. Phys. Rev. A 110, 023508 (2024)
Zhong, W.P., Yang, Z.P., Belić, M., Zhong, W.Y.: Breather solutions of the nonlocal nonlinear self-focusing Schrödinger equation. Phys. Lett. A 395, 127228 (2021)
Zhong, W.P., Belić, M.R., Huang, T.W.: Two-dimensional accessible solitons in PT-symmetric potentials. Nonlinear Dyn. 70, 2027–2034 (2012)
Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete \(\cal{PT} \) symmetric model. Phys. Rev. E 90, 032912 (2014)
Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 62, 480–488 (2018)
Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385–5409 (2018)
Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Phys. Rev. E 98, 042202 (2018)
Li, G., Zhao, Z., Jiang, X., Chen, Z., Liu, B., Malomed, B.A., Li, Y.: Strongly anisotropic vortices in dipolar quantum droplets. Phys. Rev. Lett. 133, 053804 (2024)
Li, G., Jiang, X., Liu, B., Chen, Z., Malomed, B.A., Li, Y.: Two-dimensional anisotropic vortex quantum droplets in dipolar Bose-Einstein condensates. Front. Phys. 19, 22202 (2024)
Zhong, W.P., Belić, M.: Traveling wave and soliton solutions of coupled nonlinear Schrödinger equations with harmonic potential and variable coefficients. Phys. Rev. E. 82, 047601 (2010)
Zhong, W.P., Belić, M., Malomed, B.A.: Rogue waves in a two-component Manakov system with variable coefficients and an external potential. Phys. Rev. E 92, 053201 (2015)
Guo, Y.W., Xu, S.L., He, J.R., Deng, P., Belić, M.R., Zhao, Y.: Transient optical response of cold Rydberg atoms with electromagnetically induced transparency. Phys. Rev. A 101, 023806 (2020)
Li, H., Xu, S.L., Belić, M.R., Cheng, J.X.: Three-dimensional solitons in Bose-Einstein condensates with spin-orbit coupling and Bessel optical lattices. Phys. Rev. A 98, 033827 (2018)
Li, B.B., Zhao, Y., Xu, S.L.: Two-dimensional gap solitons in parity-time symmetry Moiré optical lattices with Rydberg–Rydberg interaction. Chin. Phys. Lett. 40, 044201 (2023)
Liao, Q.Y., Hu, H.J., Chen, M.W.: Two-dimensional spatial solitons in optical lattices with Rydberg–Rydberg interaction. Acta Phys. Sin. 72, 104202 (2023)
Kanna, T., Lakshmanan, M.: Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86(22), 5043 (2001)
Vijayajayanthi, M., Kanna, T., Lakshmanan, M.: Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations. Phys. Rev. A 77(1), 013820 (2008)
Feng, B.F.: General N-soliton solution to a vector nonlinear Schrödinger equation. J. Phys. A Math. Theor. 47(35), 355203 (2014)
Ling, L., Zhao, L.C., Guo, B.: Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations. Nonlinearity 28(9), 3243 (2015)
Ohta, Y., Wang, D.S., Yang, J.: General N-dark-dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127(4), 345–371 (2011)
Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Soliton interactions in the vector NLS equation. Inverse Probl. 20(4), 1217 (2004)
Chen, J.C., Yan, Q.X., Zhang, H.: Multiple bright soliton solutions of a reverse-space nonlocal nonlinear Schrödinger equation. Appl. Math. Lett. 106, 106375 (2020)
Funding
The work was supported by the National Natural Science Foundation of China (Grant Nos.12375003 and 12171217), the Zhejiang Province Natural Science Foundation of China (Grant No.2022SJGYZC01) and Zhejiang Sci-Tech University Excellent Postgraduate Dissertation Cultivation Fund Project (Grant No.LW-YP2024015).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhao, N., Chen, Y., Cheng, L. et al. Data-driven soliton solutions and parameter identification of the nonlocal nonlinear Schrödinger equation using the physics-informed neural network algorithm with parameter regularization. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-10562-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11071-024-10562-6