[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Approximate continuous fixed-time terminal sliding mode control with prescribed performance for uncertain robotic manipulators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies an approximate continuous fixed-time terminal sliding mode control (CFTSMC) with prescribed performance for uncertain robotic manipulators. A transformation concerning tracking error using a fixed-time prescribed performance function is proposed to guarantee the transient and steady-state performance of trajectory tracking control for uncertain robotic manipulators within fixed time. Utilizing the transformed error, a smooth fixed-time sliding mode surface is designed. Then, based on the proposed sliding mode surface, an approximate CFTSMC scheme is presented to achieve inherent chattering-free control for uncertain robotic manipulators. According to the Lyapunov stability theory, it is proved that the position tracking error can be bounded in the prescribed performance boundaries and globally converges to a defined small region within fixed time and then approaches exponentially to the origin. Several numerical simulation results demonstrate the effectiveness and superiority of the proposed control strategy for uncertain robotic manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Cao, S., Sun, L., Jiang, J., Zuo, Z.: Reinforcement learning-based fixed-time trajectory tracking control for uncertain robotic manipulators with input saturation. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3116713

    Article  Google Scholar 

  2. Boutalbi, O., Benmahammed, K., Boukezata, B.: An adaptive finite-time stable control law for manipulator robots with unknown parameters. Int. J. Robust Nonlinear Control 31(11), 5218–5243 (2021)

    MathSciNet  Google Scholar 

  3. Sai, H., Xu, Z., Li, Y., Wang, K.: Adaptive nonsingular fast terminal sliding mode impedance control for uncertainty robotic manipulators. Int. J. Precis. Eng. Manuf. 22(12), 1947–1961 (2021)

    Google Scholar 

  4. Hong, Y., Xu, Y., Huang, J.: Finite-time control for robot manipulators. Syst. Control Lett. 46(4), 243–253 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Truong, T.N., Vo, A.T., Kang, H.J.: A backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators. IEEE Access. 9, 31921–31931 (2021)

    Google Scholar 

  6. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Slotine, J.J.E., Li, W., et al.: Applied nonlinear control, vol. 199. Prentice hall Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

  9. Li, P., Ma, J., Zheng, Z., Geng, L.: Fast nonsingular integral terminal sliding mode control for nonlinear dynamical systems. In: 53rd IEEE conference on decision and control. IEEE; pp. 4739–4746 (2014)

  10. Boukattaya, M., Mezghani, N., Damak, T.: Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems. ISA Trans. 77, 1–19 (2018)

    MATH  Google Scholar 

  11. Tao, M., Chen, Q., He, X., Xie, S.: Fixed-time filtered adaptive parameter estimation and attitude control for quadrotor UAVs. IEEE Trans. Aerosp. Electron. Syst. (2022). https://doi.org/10.1109/TAES.2022.3159770

    Article  Google Scholar 

  12. Xiao, X., Joshi, S.: Process planning for five-axis support free additive manufacturing. Addit. Manuf. 36, 101569 (2020)

    Google Scholar 

  13. Xiao, X., Roh, B.M., Hamilton, C.: Porosity management and control in powder bed fusion process through process-quality interactions. CIRP J. Manuf. Sci. Technol. 38, 120–128 (2022)

    Google Scholar 

  14. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Zuo, Z., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 87(2), 363–370 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: implicit Lyapunov function approach. Automatica 51, 332–340 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Zuo, Z., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366–1375 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Zou, A.M., Kumar, K.D., de Ruiter, A.H.: Fixed-time attitude tracking control for rigid spacecraft. Automatica 113, 108792 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Liu, Y., Li, H., Zuo, Z., Li, X., Lu, R.: An overview of finite/fixed-time control and its application in engineering systems. IEEE/CAA J. Autom. Sinica. 99, 1–15 (2022)

    Google Scholar 

  20. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Zuo, Z., Han, Q.L., Ning, B., Ge, X., Zhang, X.M.: An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans. Industr. Inf. 14(6), 2322–2334 (2018)

    Google Scholar 

  22. Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Autom. Control 64(7), 3046–3053 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Su, Y., Zheng, C., Mercorelli, P.: Robust approximate fixed-time tracking control for uncertain robot manipulators. Mech. Syst. Signal Process. 135, 106379 (2020)

    Google Scholar 

  24. Zhang, L., Wang, Y., Hou, Y., Li, H.: Fixed-time sliding mode control for uncertain robot manipulators. IEEE Access. 7, 149750–149763 (2019)

    Google Scholar 

  25. Sai, H., Xu, Z., He, S., Zhang, E., Zhu, L.: Adaptive nonsingular fixed-time sliding mode control for uncertain robotic manipulators under actuator saturation. ISA Trans. 123, 46–60 (2022)

    Google Scholar 

  26. Ilchmann, A., Ryan, E.P., Sangwin, C.J.: Tracking with prescribed transient behaviour. ESAIM: Control, Optim. Calc. Var. 7, 471–493 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Han, S.I., Lee, J.M.: Improved prescribed performance constraint control for a strict feedback non-linear dynamic system. IET Control Theory Appl. 7(14), 1818–1827 (2013)

    MathSciNet  Google Scholar 

  28. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Guan, Z., Ma, Y., Zheng, Z., Guo, N.: Prescribed performance control for automatic carrier landing with disturbance. Nonlinear Dyn. 94(2), 1335–1349 (2018)

    Google Scholar 

  30. Zhu, C., Zeng, J., Huang, B., Su, Y., Su, Z.: Saturated approximation-free prescribed performance trajectory tracking control for autonomous marine surface vehicle. Ocean Eng. 237, 109602 (2021)

    Google Scholar 

  31. Karayiannidis, Y., Doulgeri, Z.: Model-free robot joint position regulation and tracking with prescribed performance guarantees. Robot. Auton. Syst. 60(2), 214–226 (2012)

    Google Scholar 

  32. Jing, C., Xu, H., Niu, X.: Adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. ISA Trans. 91, 41–51 (2019)

    Google Scholar 

  33. Yang, P., Su, Y.: Proximate fixed-time prescribed performance tracking control of uncertain robot manipulators. IEEE/ASME Trans. Mechatron. (2021). https://doi.org/10.1109/TMECH.2021.3107150

    Article  Google Scholar 

  34. Li, X., Luo, X., Wang, J., Guan, X.: Finite-time consensus of nonlinear multi-agent system with prescribed performance. Nonlinear Dyn. 91(4), 2397–2409 (2018)

    MATH  Google Scholar 

  35. Zhang, R., Xu, B., Zhao, W.: Finite-time prescribed performance control of MEMS gyroscopes. Nonlinear Dyn. 101(4), 2223–2234 (2020)

    Google Scholar 

  36. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751–766 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Sánchez-Torres, J.D., Gómez-Gutiérrez, D., López, E., Loukianov, A.G.: A class of predefined-time stable dynamical systems. IMA J. Math. Control. Inf. 35(Supplement-1), i1–i29 (2018)

  38. Courant, R., John, F.: Introduction to calculus and analysis I. Springer, Berlin (2012)

    MATH  Google Scholar 

  39. Spong, M.W., Hutchinson, S., Vidyasagar, M., et al.: Robot modeling and control, vol. 3. Wiley, New York (2006)

    Google Scholar 

  40. Zhu, W.H.: Comments on Robust tracking control for rigid robotic manipulators. IEEE Trans. Autom. Control 45(8), 1577–1580 (2000)

    MATH  Google Scholar 

  41. Bechlioulis, C.P., Rovithakis, G.A.: Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE Trans. Autom. Control 55(5), 1220–1226 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Bechlioulis, C.P., Rovithakis, G.A.: Robust partial-state feedback prescribed performance control of cascade systems with unknown nonlinearities. IEEE Trans. Autom. Control 56(9), 2224–2230 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Jing, Y., Liu, Y., Zhou, S.: Prescribed performance finite-time tracking control for uncertain nonlinear systems. J. Syst. Sci. Complex. 32(3), 803–817 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, L., Liu, J., Cui, N.: Backstepping control for a two-link manipulator with appointed-time convergence. ISA Trans. (2021). https://doi.org/10.1016/j.isatra.2021.10.005

    Article  Google Scholar 

  45. Mondal, S., Mahanta, C.: Adaptive second order terminal sliding mode controller for robotic manipulators. J. Franklin Inst. 351(4), 2356–2377 (2014)

    MathSciNet  MATH  Google Scholar 

  46. He, W., Huang, H., Ge, S.S.: Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans. Cybernet. 47(10), 3136–3147 (2017)

    Google Scholar 

  47. Sánchez-Torres, J.D., Muñoz-Vázquez, A.J., Defoort, M., Aldana-López, R., Gómez-Gutiérrez, D.: Predefined-time integral sliding mode control of second-order systems. Int. J. Syst. Sci. 51(16), 3425–3435 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (11972343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbang Xu.

Ethics declarations

Conflicts of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The proof of Lemma 2

Proof

For inequality (6), with a positive constant \(\alpha \), we can obtain that

$$\begin{aligned} \lim _{x\rightarrow 0^+}\frac{d|x |^{\alpha +1}}{dx}&=\lim _{x\rightarrow 0^+}\frac{dx^{\alpha +1}}{dx}\nonumber \\&=\left( \alpha +1 \right) x^{\alpha } =\left( \alpha +1 \right) |x |^{\alpha }\text {sgn} \left( x \right) \end{aligned}$$
(A1)
$$\begin{aligned} \lim _{x\rightarrow 0^-}\frac{d|x |^{\alpha +1}}{dx}&=\lim _{x\rightarrow 0^-}\frac{d\left( -x \right) ^{\alpha +1}}{dx} =-\left( \alpha +1 \right) \left( -x \right) ^{\alpha }\nonumber \\&=-\left( \alpha +1 \right) |x |^{\alpha } =\left( \alpha +1 \right) |x |^{\alpha }\text {sgn} \left( x \right) . \end{aligned}$$
(A2)

Then, for inequality (7), we have

$$\begin{aligned} \lim _{x\rightarrow 0^+}\frac{d|x |^{\alpha +1}\text {sgn} \left( x \right) }{dx}&=\lim _{x\rightarrow 0^+} \frac{dx^{\alpha +1}}{dx}\nonumber \\&=\left( \alpha +1 \right) x^{\alpha } =\left( \alpha +1 \right) |x |^{\alpha } \end{aligned}$$
(A3)
$$\begin{aligned} \lim _{x\rightarrow 0^-}\frac{d|x |^{\alpha +1}\text {sgn} \left( x \right) }{dx}&=\lim _{x\rightarrow 0^-} \frac{d\left[ -\left( -x \right) ^{\alpha +1} \right] }{dx}\nonumber \\&=\left( \alpha +1 \right) \left( -x \right) ^{\alpha } =\left( \alpha +1 \right) |x |^{\alpha }. \end{aligned}$$
(A4)

Hence, inequalities (6) and (7) hold. \(\square \)

Appendix B: The proof of Proposition 3

Proof

The time derivative of \(\rho _i\left( t \right) \) is

$$\begin{aligned} \dot{\rho }_i\left( t \right) ={\left\{ \begin{array}{ll} -\frac{\sigma _i}{T_i}\left( \rho _{0i}-\rho _{\infty i} \right) \left( 1-\frac{t}{T_i} \right) ^{\sigma _i-1},\ 0\leqslant t<T_i\\ 0, t\geqslant T_i\\ \end{array}\right. }. \end{aligned}$$
(B5)

When \(0\leqslant t<T_i\), it can be obtained that \(\dot{\rho }_i<0\) with \(\rho _{0i}>\rho _{\infty i}\). In light of (20) and (B5), it has

$$\begin{aligned} \underset{t\rightarrow T_{i}^{-}}{\lim }\rho _i\left( t \right)&=\left( \rho _{0i}-\rho _{\infty i} \right) \left( 1-\frac{T_i}{T_i} \right) ^{\sigma _i}\nonumber \\&\quad +\rho _{\infty i}=\rho _{\infty i} =\underset{t\rightarrow T_{i}^{+}}{\lim } \rho _i\left( t \right) \end{aligned}$$
(B6)
$$\begin{aligned} \underset{t\rightarrow T_{i}^{-}}{\lim }\dot{\rho }_i\left( t \right)&=-\frac{\sigma _i}{T_i}\left( \rho _{0i}-\rho _{\infty i} \right) \left( 1-\frac{T_i}{T_i} \right) ^{\sigma _i-1}=0\nonumber \\&=\underset{t\rightarrow T_{i}^{+}}{\lim }\dot{\rho }_i\left( t \right) . \end{aligned}$$
(B7)

Hence, \(\rho _i\left( t \right) \) is monotone decreasing bounded smooth positive function. Due to the fact \(\rho _i\left( 0 \right) =\rho _{0i}\) and \(\rho _i\left( \infty \right) =\rho _{\infty i}\), we can get \(0<\rho _{\infty i}\leqslant \rho _i\left( t \right) \leqslant \rho _{0i}\). With (B6), we have \(\underset{t\rightarrow T_i}{\lim }\rho _i\left( t \right) =\rho _{\infty i}\), The proof of Proposition 3. \(\square \)

Appendix C: The proof of Proposition 4

Proof

The derivative of \(\psi \left( x \right) \) with respect to x is

$$\begin{aligned} \dot{\psi }\left( x \right) =\frac{-\underline{b}_{i}\bar{b}_i \exp \left( x \right) \left( \bar{b}_i-\underline{b}_{i} \right) }{\left( \underline{b}_{i}\exp \left( x \right) -\bar{b}_i \right) ^2}. \end{aligned}$$
(C8)

It is easy to have \(\psi \left( 0 \right) =0\). According to \(\underline{b}_i<0<\bar{b}_i\), we have \(\dot{\psi }\left( x \right) >0\), hence \(\psi \left( x \right) \) is a monotonically increasing function. It has \(\underset{\lim x\rightarrow \infty }{\psi \left( x \right) }=\frac{\underline{b}_{i}\bar{b}_i\left( \exp \left( \infty \right) -1 \right) }{\underline{b}_{i}\exp \left( \infty \right) -\bar{b}_i}=\bar{b}_i\) and \(\underset{\lim x\rightarrow -\infty }{\psi \left( x\right) }=\frac{\underline{b}_{i} \bar{b}_i\left( \exp \left( -\infty \right) -1 \right) }{\underline{b}_{i}\exp \left( -\infty \right) -\bar{b}_i}=\underline{b}_i\), so we can have \(\psi \left( x \right) \in \left( \underline{b}_{i}, \bar{b}_i \right) \). According to (12), it can obtain \(e_i\in \left( \underline{b}_{i} \rho _i(t), \bar{b}_i\rho _i(t) \right) \), so Proposition 4 has been proved. \(\square \)

Appendix D: The proof of Proposition 5

Proof

From Proposition 3, we have \(\rho _i>0\) and \(\dot{\rho }_i\leqslant 0\). Considering \(\alpha _i\) defined in (26), it can obtain \(\alpha _i\geqslant 0\). From Proposition 4, we can have \(\frac{e_i\left( t \right) }{\rho _i\left( t \right) }-\underline{b}_{i}>0\) and \(\bar{b}_i-\frac{e_i\left( t \right) }{\rho _i\left( t \right) }>0\). According to the triangle inequality \(a+b\geqslant 2\sqrt{ab}\) with \(a\geqslant 0\) and \(b\geqslant 0\), it has

$$\begin{aligned} \beta _i&=\left( \frac{1}{e_i/\rho _i-\underline{b}_{i}} +\frac{1}{\bar{b}_i-e_i/\rho _i} \right) /\rho _i\nonumber \\&\geqslant \frac{2}{\rho _i} \sqrt{\frac{1}{\left( e_i/\rho _i-\underline{b}_{i} \right) \left( \bar{b}_i-e_i/\rho _i \right) }}. \end{aligned}$$
(D9)

If and only if \(\frac{1}{e_i/\rho _i-\underline{b}_{i}} =\frac{1}{\bar{b}_i-e_i/\rho _i}\), the equality in (D9) holds, which means that \(\beta _i\) can get the minimum value when \(\frac{e_i}{\rho _i}=\frac{\underline{b}_{i}+\bar{b}_i}{2}\). As a consequence, \(\beta _i\) satisfies

$$\begin{aligned} \beta _i\geqslant \frac{4}{\rho _i\left( \bar{b}_i -\underline{b}_{i} \right) }. \end{aligned}$$
(D10)

From (13), it has \(\bar{b}_i-\underline{b}_i<2\), then we can have \(\beta _i>2\rho _{0i}^{-1}\). Proposition 5 has been proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sai, H., Xu, Z., Xia, C. et al. Approximate continuous fixed-time terminal sliding mode control with prescribed performance for uncertain robotic manipulators. Nonlinear Dyn 110, 431–448 (2022). https://doi.org/10.1007/s11071-022-07650-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07650-w

Keywords

Navigation