[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Non-local total bounded variation scheme for multiple-coil magnetic resonance image restoration

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we design a variational model for restoring multiple-coil magnetic resonance images (MRI) corrupted by non-central Chi distributed noise. The energy functional corresponding to the restoration problem is derived using the maximum a posteriori (MAP) estimator. Optimizing this functional yields the solution, which corresponds to the restored version of the image. The non-local total bounded variation prior is being used as the regularization term in the functional derived using the MAP estimation process. Further, the split-Bregman iteration scheme is being followed for fast numerical computation of the model. The results are compared with the state of the art MRI restoration models using visual representations and statistical measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Hereafter we use the term Chi distribution to denote non-central Chi distribution, if not mentioned otherwise.

  2. Here we note that, the samples of noise on each pixel are assumed to be mutually independent and identically distributed, even though the noise is correlated with the pixel.

  3. http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html.

References

  • Aja-Fernandez, S., Alberola-Lopez, C., & Westin, C.-F. (2008). Noise and signal estimation in magnitude MRI and Rician distributed images: A LMMSE approach. IEEE Transactions on Image Processing, 17(8), 1383–1398.

    Article  MathSciNet  Google Scholar 

  • Aja-Fernández, S., Brionb, V., & Tristan-Vegaa, A. (2013). Effective noise estimation and filtering from correlated multiple-coil MR data. Magnetic Resonance Imaging, 31(2), 272–285.

  • Aja-Fernandez, S., & Tristan-Vega, A. (2013). A review on statistical noise models for magnetic resonance imaging. Technical report of the LPI, TECH-LPI2013-01, Universidad de Valladolid (pp. 1–23).

  • Aja-Fernandez, S., Tristan-Vega, A., & Alberola-Lopez, C. (2009). Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. Magnetic Resonance Imaging, 27, 1397–1409.

    Article  Google Scholar 

  • Awate, S. P., & Whitaker, R. T. (2005). Nonparametric neighborhood statistics for MRI denoising. In Proceedings of the IPMI (pp. 677–88).

  • Awate, S. P., & Whitaker, R. T. (2007). Feature-preserving MRI denoising: A nonparametric empirical Beyes approach. IEEE Transactions on Medical Imaging, 29(9), 1242–55.

    Article  Google Scholar 

  • Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In Proceedings of the computer vision and pattern recognition (pp. 1–6).

  • Chambolle, A., & Pock, T. (2010). A first-order primal-dual algorithm for convex problems with applications to imaging. Convergence, 40(1), 1–49.

    MathSciNet  MATH  Google Scholar 

  • Chan, S. H., Khoshabeh, R., Gibson, K. B., Gill, P. E., & Nguyen, T. Q. (2011). An augmented Lagrangian method for total variation video restoration. IEEE Transactions on Image Processing, 20(11), 3097–3111.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, L., Chao-Bang, G., & Xi, Y. (2015). A MRI denoising method based on 3D nonlocal means and multidimensional PCA. Computational and Mathematical Methods in Medicine, 1–11, 2015.

    MathSciNet  Google Scholar 

  • Combettes, P. L., & Wajs, V. R. (2005). Signal recovery by proximal forward-backward splitting. Multiscale Modeling and Simulation, 4(4), 1168–1200.

    Article  MathSciNet  MATH  Google Scholar 

  • Foi, A. (2011). Noise estimation and removal in MR imaging: The variance-stabilization approach. In 2011 IEEE international symposium on biomedical imaging: from nano to macro (pp. 1809–1814).

  • Gilboa, G., & Osher, S. (2008). Nonlocal operators with applications to image processing. SIAM Multiscale Modeling & Simulation (MMS), 7(3), 1005–1028.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein, T., Bresson, X., & Osher, S. (2010). Geometric applications of the split Bregman method: Segmentation and surface reconstruction. Journal of Scientific Computing, 45(1), 272–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Golshan, H. M., & Hasanzadeh, R. P. (2015). An optimized LMMSE based method for 3D MRI denoising. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12(4), 861–870.

    Article  Google Scholar 

  • Golshan, H. M., Hasanzadeh, R. P., & Yousefzadeh, S. C. (2013). An MRI denoising method using image data redundancy and local SNR estimation. Magnetic Resonance Imaging, 31(7), 1206–1217.

    Article  Google Scholar 

  • Jian, Z., & Yuli, F. (2015). Split Bregman algorithms for sparse group Lasso with application to MRI reconstruction. Multidimensional Systems and Signal Processing, 26(3), 787–802.

    Article  MathSciNet  MATH  Google Scholar 

  • Jianlou, X., Xiangchu, F., & Yan, H. (2014). A coupled variational model for image denoising using a duality strategy and split Bregman. Multidimensional Systems and Signal Processing, 25(1), 83–94.

    Article  MATH  Google Scholar 

  • Krissian, K., & Aja-Fernandez, S. (2009). Noise-driven anisotropic diffusion filtering of MRI. IEEE Transactions on Image Processing, 18(10), 2265–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, R. W., Shi, L., Huang, W., Xu, J., Yu, S. C., & Wang, D. (2014). Generalized total variation-based mri rician denoising model with spatially adaptive regularization parameters. Magnetic Resonance Imaging, 32(6), 702–20.

    Article  Google Scholar 

  • Liu, R. W., Shi, L., Yu, S. C., & Wang, D. (2015). A two-step optimization approach for nonlocal total variation-based rician noise reduction in magnetic resonance images. Medical Physics, 42(9), 5167–5187.

    Article  Google Scholar 

  • Liu, X., & Huang, L. (2011). Split Bregman iteration algorithm for total bounded variation regularization based image deblurring. Journal of Mathematical Analysis and Applications, 372, 486–495.

    Article  MathSciNet  MATH  Google Scholar 

  • Manjo, J. V., Carbonell-Caballero, J., Lull, J. J., Robles, M., Gracia, G. M., & BonmatI, L. M. (2008). MRI denoising using non-local means. Medical Image Analysis, 12(1), 514–523.

    Article  Google Scholar 

  • Manjon, J. V., Coupe, P., Concha, L., Buades, A., Collins, D. L., & Robles, M. (2013). Diffusion weighted image denoising using overcomplete local PCA. PLoS ONE, 8(9), 1–12.

    Article  Google Scholar 

  • Mukherjee, P. S., & Qiu, P. (2011). 3-D image denoising by local smoothing and nonparametric regression. Technometrics, 53(2), 196–208.

    Article  MathSciNet  Google Scholar 

  • Osher, S., Rudin, L. I., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1), 259–268.

    MathSciNet  MATH  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  • Rajan, J., Veraart, J., Audekerke, J. V., Verhoye, M., & Sijbers, J. (2012). Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. Magnetic Resonance Imaging, 30(10), 1512–1518.

    Article  Google Scholar 

  • Sijbers, J., & den Dekker, A. J. (2004a). Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magnetic Resonance in Medicine, 51(3), 586–594.

    Article  Google Scholar 

  • Sijbers, J., & den Dekker, A. J. (2004b). Likelihood estimation of signal amplitude and noise variance from MR data. Magnetic Resonance in Medicine, 51(3), 586–594.

    Article  Google Scholar 

  • Sijbers, J., den Dekker, A. J., Van der Linden, A., Verhoye, M., & Van Dyck, D. (1999). Adaptive anisotropic noise filtering for magnitude MR data. Magnetic Resonance in Medicine, 17(10), 1533–1539.

    Google Scholar 

  • Wang, Z., & Bovik, A. C. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 1–14.

    Article  Google Scholar 

  • Wood, J. C., & Johnson, K. M. (1999). Wavelet packet denoising of magnetic resonance images: Importance of Rician noise at low SNR. Magnetic Resonance in Medicine, 41(3), 631–635.

    Article  Google Scholar 

  • Zhu, M., & Chan T. F. (2008). An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM technical report, 08-34.

Download references

Acknowledgements

Dr. Jidesh would like to thank the Department of Science and Technology (Science and Engineering Research Board), Government of India for providing the financial support under the Project Grant No. ECR/2017/000230. Mr. Shivaram Holla would like to thank the Ministry of Human Resource Development, Government of India, for providing the financial assistance to pursue Ph.D. research work at National Institute of Technology, Karnataka, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jidesh.

Appendix I

Appendix I

Here we analyze the uniqueness property of the solution of (19). Since the convexity of the TV norm is known very well from the literature, the regularization term need not require any further explanation. Consider the reactive or fidelity term in (19) (first term) and define it as \(\phi (u)\) i.e.

$$\begin{aligned} \phi (u)=(L-1) \log (u)+ (u^2)/(2\sigma ^2)-\log I_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) , \end{aligned}$$
(33)

let us take the first variation of \(\phi (u)\) with respect to u, we get

$$\begin{aligned} \phi ^{\prime }(u)=(L-1)/u+\frac{1}{\sigma ^2}\left[ u-\frac{I^{\prime }_{l-1}\left( \frac{u_0 u}{\sigma ^2}\right) }{I_{l-1}\left( \frac{u_0 u}{\sigma ^2}\right) } u_0\right] , \end{aligned}$$
(34)

where \(I^{\prime }(\cdot )\) is the first derivative of the Bessel function \(I(\cdot )\). Now let us take the second derivative of the function \(\phi (u)\)

$$\begin{aligned} \phi ^{\prime \prime }(u)=\frac{1-L}{u^2}+\frac{1}{\sigma ^2}\left[ 1-\frac{u_0^2}{\sigma ^2}\left[ \frac{I^{\prime \prime }_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }{I_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }-\left[ \frac{I^{\prime }_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }{I_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }\right] ^2\right] \right] , \end{aligned}$$
(35)

where

$$\begin{aligned} I_L(u)= & {} \sum _{k=0}^{\infty } \frac{(-1)^k \left( \frac{u}{2}\right) ^{2L+1}}{(k+L)!k!},\\ I^{\prime }_L(u)= & {} \frac{1}{2}\left[ I_{L-1}(u)+I_{L+1}(u)\right] , \end{aligned}$$

and

$$\begin{aligned} I^{\prime \prime }_L(u)=\frac{1}{4}\left[ I_{L-2}(u)+2I_L(u)+I_{L+2}(u)\right] . \end{aligned}$$

Now the condition for convexity of the functional \(\phi (u)\) is that \(\phi ^{\prime \prime }(u)>0\), therefore (for \(L=1\)),

$$\begin{aligned} \frac{u_0^2}{\sigma ^2}\left[ \frac{I^{\prime \prime }_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }{I_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }-\left[ \frac{I^{\prime }_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }{I_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }\right] ^2\right]< & {} 1\nonumber \\ \left[ \frac{I^{\prime \prime }_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }{I_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }-\left[ \frac{I^{\prime }_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }{I_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }\right] ^2\right]< & {} \frac{\sigma ^2}{u^2} \end{aligned}$$
(36)

it implies

$$\begin{aligned} \frac{I^{\prime \prime }_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }{I_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }<\left( \frac{I^{\prime }_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }{I_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }\right) ^2+\frac{\sigma ^2}{u^2}, \end{aligned}$$

Substituting the expressions of \(I^{\prime }(\cdot )\) and \(I^{\prime \prime }(u)\) in the above expression we get

$$\begin{aligned} \frac{\frac{1}{4}\left[ I_{L-3}\left( \frac{u_0u}{\sigma ^2}\right) +2I_{L-1}\left( \frac{u_0u}{\sigma ^2}\right) +I_{L+1}\left( \frac{u_0u}{\sigma ^2}\right) \right] }{I_{L-1}\left( \frac{u_0u}{\sigma ^2}\right) }<\left( \frac{\frac{1}{2}\left[ I_{L-2}\left( \frac{u_0u}{\sigma ^2}\right) +I_{L}\left( \frac{u_0u}{\sigma ^2}\right) \right] }{I_{L-1}\left( \frac{u_0 u}{\sigma ^2}\right) }\right) ^2+\frac{\sigma ^2}{u^2} \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jidesh, P., Holla, S. Non-local total bounded variation scheme for multiple-coil magnetic resonance image restoration. Multidim Syst Sign Process 29, 1427–1448 (2018). https://doi.org/10.1007/s11045-017-0510-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0510-z

Keywords

Mathematics Subject Classification

Navigation