[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A differential approach for modeling revolute clearance joints in planar rigid multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A non-penetration approach of frictional contact analysis is presented for modeling revolute clearance joints of planar rigid multibody systems. In the revolute clearance joint, the motion modes of the journal are divided into three categories, namely, the free motion, collision, and permanent contact modes. The switch between different contact modes is identified by the state of the journal and bearing, including the gap and the normal relative velocity. When impact in the revolute clearance joint is detected, the collision process is simulated by the impulse-based differential approach, where Stronge’s improved model for restitution is employed to determine the relative velocity after impact. Instead of algebraic equations, the impact process is described by a set of ordinary differential equations (ODEs), which avoids solving complementarity problems. Moreover, in the permanent contact mode, the constraint-based approach and modified Coulomb’s friction law are adopted. The permanent contact mode maintains for most of the time and the governing ODEs are non-stiff. There is general agreement that the constraint-based approach is more efficient than the force-based method. A slider–crank mechanism with a revolute clearance joint is considered as a demonstrative application example where the comparison with the continuous contact force model is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Flores, P., Ambrósio, J., Claro, J.P., et al.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Flores, P., Ambrósio, J., Claro, J.C.P., et al.: Influence of the contact–impact force model on the dynamic response of multi-body systems. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 220(1), 21–34 (2006)

    Google Scholar 

  4. Koshy, C.S., Flores, P., Lankarani, H.M.: Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints: computational and experimental approaches. Nonlinear Dyn. 73(1–2), 325–338 (2013)

    Article  Google Scholar 

  5. Marques, F., Flores, P., Lankarani, H.M.: On the frictional contacts in multibody system dynamics. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain (2015)

    Google Scholar 

  6. Alves, J., Peixinho, N., da Silva, M.T., et al.: A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech. Mach. Theory 85, 172–188 (2015)

    Article  Google Scholar 

  7. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Article  Google Scholar 

  8. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5(2), 193–207 (1994)

    Google Scholar 

  9. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  10. Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2(1), 1–24 (1998)

    Article  MATH  Google Scholar 

  11. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37(9), 895–913 (2002)

    Article  MATH  Google Scholar 

  12. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004)

    Article  MATH  Google Scholar 

  13. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17–19), 1359–1369 (2004)

    Article  Google Scholar 

  14. Flores, P., Ambrósio, J., Claro, J.C.P., et al.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41(3), 247–261 (2006)

    Article  MATH  Google Scholar 

  15. Flores, P., Ambrósio, J., Claro, J.C.P., et al.: Spatial revolute joints with clearances for dynamic analysis of multi-body systems. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 220(4), 257–271 (2006)

    Google Scholar 

  16. Flores, P., Ambrósio, J., Claro, J.C.P., et al.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1(3), 240–247 (2006)

    Article  Google Scholar 

  17. Flores, P., Lankarani, H.M.: Spatial rigid-multibody systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60(1–2), 99–114 (2010)

    Article  MATH  Google Scholar 

  18. Flores, P., Ambrósio, J., Claro, J.C.P., et al.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011007 (2008)

    Article  Google Scholar 

  19. Machado, M., Costa, J., Seabra, E., et al.: The effect of the lubricated revolute joint parameters and hydrodynamic force models on the dynamic response of planar multibody systems. Nonlinear Dyn. 69(1–2), 635–654 (2012)

    Article  Google Scholar 

  20. Zhang, Z., Xu, L., Flores, P., et al.: A Kriging model for dynamics of mechanical systems with revolute joint clearances. J. Comput. Nonlinear Dyn. 9(3), 031013 (2014)

    Article  Google Scholar 

  21. Bauchau, O.A., Rodriguez, J.: Modeling of joints with clearance in flexible multibody systems. Int. J. Solids Struct. 39(1), 41–63 (2002)

    Article  MATH  Google Scholar 

  22. Tian, Q., Zhang, Y., Chen, L., et al.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009)

    Article  Google Scholar 

  23. Tian, Q., Zhang, Y., Chen, L., et al.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)

    Article  MATH  Google Scholar 

  24. Tian, Q., Liu, C., Machado, M., et al.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)

    Article  MATH  Google Scholar 

  25. Tian, Q., Sun, Y., Liu, C., et al.: ElastoHydroDynamic lubricated cylindrical joints for rigid–flexible multibody dynamics. Comput. Struct. 114(115), 106–120 (2013)

    Article  Google Scholar 

  26. Tian, Q., Xiao, Q., Sun, Y., et al.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015)

    Article  MathSciNet  Google Scholar 

  27. Bai, Z.F., Zhao, Y.: Dynamic behavior analysis of planar mechanical systems with clearance in revolute joints using a new hybrid contact force model. Int. J. Mech. Sci. 54(1), 190–205 (2012)

    Article  Google Scholar 

  28. Bai, Z.F., Zhao, Y., Chen, J.: Dynamics analysis of planar mechanical system considering revolute clearance joint wear. Tribol. Int. 64, 85–95 (2013)

    Article  Google Scholar 

  29. Erkaya, S., Uzmay, İ.: Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn. 58(1–2), 179–198 (2009)

    Article  MATH  Google Scholar 

  30. Erkaya, S., Doğan, S.: A comparative analysis of joint clearance effects on articulated and partly compliant mechanisms. Nonlinear Dyn. 81(1–2), 323–341 (2015)

    Article  Google Scholar 

  31. Erkaya, S., Doğan, S., Ulus, Ş.: Effects of joint clearance on the dynamics of a partly compliant mechanism: numerical and experimental studies. Mech. Mach. Theory 88, 125–140 (2015)

    Article  Google Scholar 

  32. Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints. Multibody Syst. Dyn. 28(4), 369–393 (2012)

    Article  MathSciNet  Google Scholar 

  33. Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53, 30–49 (2012)

    Article  Google Scholar 

  34. Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar rigid-body mechanical systems with two-revolute clearance joints. Nonlinear Dyn. 73(1–2), 259–273 (2013)

    Article  Google Scholar 

  35. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    Article  MATH  Google Scholar 

  36. Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61(4), 633–653 (2010)

    Article  MATH  Google Scholar 

  37. Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlinear Dyn. 7(3), 031003 (2012)

    Article  Google Scholar 

  38. Flores, P., Machado, M., Silva, M.T., et al.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25(3), 357–375 (2011)

    Article  MATH  Google Scholar 

  39. Erkaya, S., Uzmay, İ.: Experimental investigation of joint clearance effects on the dynamics of a slider–crank mechanism. Multibody Syst. Dyn. 24(1), 81–102 (2010)

    Article  MATH  Google Scholar 

  40. Flores, P., Koshy, C.S., Lankarani, H.M., et al.: Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn. 65(4), 383–398 (2011)

    Article  Google Scholar 

  41. Yaqubi, S., Dardel, M., Daniali, H.M., et al.: Modeling and control of crank–slider mechanism with multiple clearance joints. Multibody Syst. Dyn. 36(2), 143–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gummer, A., Sauer, B.: Modeling planar slider–crank mechanisms with clearance joints in RecurDyn. Multibody Syst. Dyn. 31(2), 127–145 (2014)

    Article  Google Scholar 

  43. Rahmanian, S., Ghazavi, M.R.: Bifurcation in planar slider–crank mechanism with revolute clearance joint. Mech. Mach. Theory 91, 86–101 (2015)

    Article  Google Scholar 

  44. Varedi, S.M., Daniali, H.M., Dardel, M., et al.: Optimal dynamic design of a planar slider–crank mechanism with a joint clearance. Mech. Mach. Theory 86, 191–200 (2015)

    Article  Google Scholar 

  45. Zhang, J., Du, X.: Time-dependent reliability analysis for function generation mechanisms with random joint clearances. Mech. Mach. Theory 92, 184–199 (2015)

    Article  Google Scholar 

  46. Pereira, C., Ambrósio, J., Ramalho, A.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015)

    Article  Google Scholar 

  47. Orden, J.C.G.: Analysis of joint clearances in multibody systems. Multibody Syst. Dyn. 13(4), 401–420 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Flores, P., Leine, R., Glocker, C.: Application of the nonsmooth dynamics approach to model and analysis of the contact–impact events in cam–follower systems. Nonlinear Dyn. 69(4), 2117–2133 (2012)

    Article  MathSciNet  Google Scholar 

  50. Zhuang, F., Wang, Q.: Modeling and simulation of the nonsmooth planar rigid multibody systems with frictional translational joints. Multibody Syst. Dyn. 29(4), 403–423 (2013)

    MathSciNet  Google Scholar 

  51. Zhang, J., Wang, Q.: Modeling and simulation of a frictional translational joint with a flexible slider and clearance. Multibody Syst. Dyn. (2015). doi:10.1007/s11044-015-9474-7

    Google Scholar 

  52. Qi, Z., Xu, Y., Luo, X., et al.: Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Multibody Syst. Dyn. 24(2), 133–166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Qi, Z., Luo, X., Huang, Z.: Frictional contact analysis of spatial prismatic joints in multibody systems. Multibody Syst. Dyn. 26(4), 441–468 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Qi, Z., Wang, G., Zhang, Z.: Contact analysis of deep groove ball bearings in multibody systems. Multibody Syst. Dyn. 33(2), 115–141 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Flores, P., Machado, M., Seabra, E., et al.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 0110191 (2011)

    Article  Google Scholar 

  56. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mirtich, B.V.: Impulse-based dynamic simulation of rigid body systems. Ph.D. Thesis, University of California at Berkeley (1996)

  58. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  59. Rooney, G.T., Deravi, P.: Coulomb friction in mechanism sliding joints. Mech. Mach. Theory 17(3), 207–211 (1982)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the National Natural Science Foundation of China (Grant No. 11372057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Qi, Z. & Wang, J. A differential approach for modeling revolute clearance joints in planar rigid multibody systems. Multibody Syst Dyn 39, 311–335 (2017). https://doi.org/10.1007/s11044-016-9552-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-016-9552-5

Keywords

Navigation