[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An adaptive regression based single-image super-resolution

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image super-resolution (SR) is an important topic of low-level computer vision and is widely used in different fields. In this paper, a novel single-image SR method, which integrates image clustering, sparse representation and linear regression is proposed. Existing global regression based methods usually assume that the corresponding coefficients of HR and LR image patches are equal, which cannot be strictly guaranteed in practice and possibly leads to inaccurate coefficient estimation. In order to adapt the regression model to different types of patches, clustering operations are applied on the training patches to calculate the coefficients of the HR and LR training patches in each class under the same pair of dictionaries. Then the projection relationship between the coefficients of HR and LR training patches in each class is obtained by solving a ridge regression problem. From the experimental results, our algorithm demonstrates better results in both qualitative and quantitative aspects and the computational speed of our methods is noticeably less than other competitive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahn N, Kang B, Sohn KA (2018) Fast, accurate, and lightweight super-resolution with cascading residual network. In: Proceedings of the European conference on computer vision (ECCV), pp 252–268 . https://doi.org/10.1007/978-3-030-01249-6_16

  2. ALzubi JA, Bharathikannan B, Tanwar S, Manikandan R, Khanna A, Thaventhiran C (2019) Boosted neural network ensemble classification for lung cancer disease diagnosis. Appl Soft Comput 80:579–591. https://doi.org/10.1016/j.asoc.2019.04.031

    Article  Google Scholar 

  3. Alzubi JA, Kumar A, Alzubi O, Manikandan R et al (2019) Efficient approaches for prediction of brain tumor using machine learning techniques. Indian Journal of Public Health Research & Development, 10(2). https://doi.org/10.5958/0976-5506.2019.00298.5

  4. Bevilacqua M, Roumy A, Guillemot C, Alberi-Morel ML (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. Proc Brit Mach Vis Conf, pp 1–10. https://doi.org/10.5244/c.26.135

  5. Cai W, Wei Z (2020) Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci Remote Sens Lett, pp 1–5. https://doi.org/10.1109/lgrs.2020.3026587

  6. Cai W, Liu B, Wei Z, Li M, Kan J (2021) Tardb-net: Triple-attention guided residual dense and bilstm networks for hyperspectral image classification. Multimed Tools Appl, pp 1–22. https://doi.org/10.1007/s11042-020-10188-x

  7. Chang H, Yeung DY, Xiong Y (2004) Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004., IEEE, vol 1, pp I–I. https://doi.org/10.1109/cvpr.2004.1315043

  8. Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: European conference on computer vision. https://doi.org/10.1007/978-3-319-10593-2_13. Springer, Cham, pp 184–199

  9. Dong C, Loy CC, He K, Tang X (2015) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38 (2):295–307. https://doi.org/10.1109/tpami.2015.2439281

    Article  Google Scholar 

  10. Dong C, Loy CC, Tang X (2016) Accelerating the super-resolution convolutional neural network. In: European conference on computer vision, Springer, pp 391–407. https://doi.org/10.1007/978-3-319-46475-6_25

  11. Duchon CE (1979) Lanczos filtering in one and two dimensions. Journal of Applied Meteorology 18(8):1016–1022. https://doi.org/10.1175/1520-0450(1979)018

    Article  Google Scholar 

  12. Freeman WT, Pasztor EC, Carmichael OT (2000) Learning low-level vision. Int J Comput Vis 40(1):25–47. https://doi.org/10.1109/iccv.1999.790414

    Article  MATH  Google Scholar 

  13. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

  14. Huang S, Sun J, Yang Y, Fang Y, Lin P, Que Y (2018) Robust single-image super-resolution based on adaptive edge-preserving smoothing regularization. IEEE Trans Image Process 27(6):2650–2663. https://doi.org/10.1109/tip.2018.2809472

    Article  MathSciNet  MATH  Google Scholar 

  15. Isaac JS, Kulkarni R (2015) Super resolution techniques for medical image processing. In: 2015 International Conference on Technologies for Sustainable Development (ICTSD), IEEE. https://doi.org/10.1109/ICTSD.2015.7095900. IEEE, pp 1–6

  16. Jain DK, Jacob S, Alzubi J, Menon V (2019) An efficient and adaptable multimedia system for converting pal to vga in real-time video processing. J Real-Time Image Proc, pp 1–13. https://doi.org/10.1007/s11554-019-00889-4

  17. Jiang J, Ma X, Chen C, Lu T, Wang Z, Ma J (2016) Single image super-resolution via locally regularized anchored neighborhood regression and nonlocal means. IEEE Transactions on Multimedia 19(1):15–26. https://doi.org/10.1109/tmm.2016.2599145

    Article  Google Scholar 

  18. Lai WS, Huang JB, Ahuja N, Yang MH (2017) Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 624–632 . https://doi.org/10.1109/cvpr.2017.618

  19. Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690. https://doi.org/10.1109/cvpr.2017.19

  20. Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process 10(10):1521–1527. https://doi.org/10.1109/icip.2000.899369

    Article  Google Scholar 

  21. Lin F, Fookes C, Chandran V, Sridharan S (2007) Super-resolved faces for improved face recognition from surveillance video. In: International conference on biometrics, Springer, pp 1–10. https://doi.org/10.1007/978-3-540-74549-5_1

  22. Lu X, Ma C, Ni B, Yang X, Reid I, Yang MH (2018) Deep regression tracking with shrinkage loss. In: Proceedings of the European conference on computer vision (ECCV), pp 369–386. https://doi.org/10.1007/978-3-030-01264-9_22

  23. Lu X, Ma C, Ni B, Yang X (2019) Adaptive region proposal with channel regularization for robust object tracking. IEEE transactions on circuits and systems for video technology. https://doi.org/10.1109/tcsvt.2019.2944654

  24. Meijering E, Unser M (2003) A note on cubic convolution interpolation. IEEE Trans Image Process 12(4):477–479. https://doi.org/10.1109/tip.2003.811493

    Article  MathSciNet  Google Scholar 

  25. Protter M, Elad M, Takeda H, Milanfar P (2008) Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans Image Process 18(1):36–51. https://doi.org/10.1109/tip.2008.2008067

    Article  MathSciNet  MATH  Google Scholar 

  26. Rani SS, Alzubi JA, Lakshmanaprabu S, Gupta D, Manikandan R (2019) Optimal users based secure data transmission on the internet of healthcare things (ioht) with lightweight block ciphers. Multimed Tools Appl, pp 1–20. https://doi.org/10.1007/s11042-019-07760-5

  27. Sun J, Xu Z, Shum HY (2008) Image super-resolution using gradient profile prior. In: 2008 IEEE conference on computer vision and pattern recognition, IEEE, pp 1–8. https://doi.org/10.1109/cvpr.2008.4587659

  28. Timofte R, De Smet V, Van Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the IEEE international conference on computer vision, pp 1920–1927 . https://doi.org/10.1109/iccv.2013.241

  29. Wan B, Meng L, Ming D, Qi H, Hu Y, Luk K (2009) Video image super-resolution restoration based on iterative back-projection algorithm. In: 2009 IEEE international conference on computational intelligence for measurement systems and applications, IEEE, pp 46–49. https://doi.org/10.1109/cimsa.2009.5069916

  30. Wang H, Gao X, Zhang K, Li J (2015) Single-image super-resolution using active-sampling gaussian process regression. IEEE Trans Image Process 25(2):935–948. https://doi.org/10.1109/tip.2015.2512104

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang Hp, Zhou Ll, Zhang J (2010) Region-based bicubic image interpolation algorithm. Comput Eng 19:216–218. https://en.cnki.com.cn/Article_en/CJFDTotal-JSJC201019078.htm

    Google Scholar 

  32. Wang Y, Perazzi F, McWilliams B, Sorkine-Hornung A, Sorkine-Hornung O, Schroers C (2018) A fully progressive approach to single-image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 864–873 . https://doi.org/10.1109/cvprw.2018.00131

  33. Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: 2008 IEEE conference on computer vision and pattern recognition, IEEE, pp 1–8. https://doi.org/10.1109/cvpr.2008.4587647

  34. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873. https://doi.org/10.1109/tip.2010.2050625

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang W, Zhou F, Zhu R, Fukui K, Wang G, Xue JH (2019) Deep learning for image super-resolution. Neurocomputing, pp 291–292. https://doi.org/10.1016/j.neucom.2019.09.091

  36. Yang ZL, Zhang SY, Hu YT, Hu ZW, Huang YF (2020) Vae-stega: Linguistic steganography based on variational auto-encoder. IEEE Transactions on Information Forensics and Security 16:880–895. https://doi.org/10.1109/tifs.2020.3023279

    Article  Google Scholar 

  37. Zeyde R, Elad M, Protter M (2010) On single image scale-up using sparse-representations. In: International conference on curves and surfaces, Springer, pp 711–730. https://doi.org/10.1007/978-3-642-27413-8_47

  38. Zhang X, Ma S, Zhang Y, Zhang L, Gao W (2009) Nonlocal edge-directed interpolation. In: Pacific-Rim conference on multimedia, Springer, pp 1197–1207. https://doi.org/10.1007/978-3-642-10467-1_121

  39. Zhang Y, An M (2017) Deep learning-and transfer learning-based super resolution reconstruction from single medical image. Journal of Healthcare Engineering 2017:1–20. https://doi.org/10.1155/2017/5859727

    Article  Google Scholar 

  40. Zhao F, Si W, Dou Z (2019) Image super-resolution via two stage coupled dictionary learning. Multimed Tools Appl 78(20):28453–28460. https://doi.org/10.1007/s11042-017-5493-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziliang Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, M., Feng, Z., Wang, H. et al. An adaptive regression based single-image super-resolution. Multimed Tools Appl 81, 28231–28248 (2022). https://doi.org/10.1007/s11042-022-12911-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12911-2

Keywords

Navigation