Abstract
In this study, we leveraged the sparse representation for multi-modal information fusion to handle 3D model retrieval problem. First, SIFT feature is extracted to represent the visual appearance of 2D view images for each 3D models. With this low-level feature representation, the Latent Dirichlet Allocation model is learned to generate the high-level & discriminative visual representation for individual 3D model. Then, we utilize the sparse representation framework to handle the key problem, the similarity measure between two different 3D models, for model retrieval. The performance of the proposed method is evaluated on the novel MV-RED 3D object dataset, which contains both RGB and depth 3D model data. The comparison experiments demonstrate the proposed sparse representation-based framework can benefit from multi-modal information fusion and consequently augment the performance.
Similar content being viewed by others
References
Ansary TF, Daoudi M, Vandeborre J-P (2007) A bayesian 3-d search engine using adaptive views clustering. IEEE Trans Multimedia 9(1):78–88
Ansary TF, Daoudi M, Vandeborre J-P (2007) A bayesian 3-d search engine using adaptive views clustering. IEEE Trans Multimedia 9(1):78–88
Bimbo AD, Pala P (2006) Content-based retrieval of 3d models. ACM Trans Multimed Comput Commun Appl (TOMM) 2(1):20–43
Bustos B, Keim DA, Saupe D, Schreck T, Vranić DV (2005) Feature-based similarity search in 3d object databases. ACM Comput Surv (CSUR) 37(4):345–387
Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux J-L (2015) Color image analysis by quaternion-type moments. J Math Imaging Vision 51 (1):124–144
Chen D-Y, Tian X-P, Shen Y-T, Ouhyoung M (2003) On visual similarity based 3d model retrieval. In: Computer graphics forum, vol 22. Wiley Online Library, pp 223–232
Daras P, Axenopoulos A (2010) A 3d shape retrieval framework supporting multimodal queries. Int J Comput Vis 89(2–3):229–247
Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, Jacobs D (2003) A search engine for 3d models. ACM Trans Graph (TOG) 22 (1):83–105
Gao Y, Dai Q, Wang M, Zhang N (2011) 3d model retrieval using weighted bipartite graph matching. Sig Proc Image Comm 26(1):39–47
Gao Y, Dai Q, Zhang N-Y (2010) 3d model comparison using spatial structure circular descriptor. Pattern Recogn 43(3):1142–1151
Gao Y, Liu A, Nie W, Su Y, Dai Q, Chen F, Chen Y, Cheng Y, Dong S, Duan X et al (2015) 3d object retrieval with multimodal views
Gao Y, Tang J, Hong R, Yan S, Dai Q, Zhang N, Chua T-S (2012) Camera constraint-free view-based 3-d object retrieval. IEEE Trans Image Process 21 (4):2269–2281
Gao Y, Wang M, Tao D, Ji R, Dai Q (2012) 3-d object retrieval and recognition with hypergraph analysis. IEEE Trans Image Process 21(9):4290–4303
Bin G, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015) Incremental learning for ν-support vector regression. Neural Netw 67:140–150
Guétat G, Maitre M, Joly L, Lai S-L, Lee T, Shinagawa Y (2006) Automatic 3-d grayscale volume matching and shape analysis. IEEE Trans Inf Technol Biomed 10(2):362–376
Leng B, Xiong Z (2011) Modelseek: an effective 3d model retrieval system. Multimedia Tools Appl 51(3):935–962
Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518
Liu A-A, Nie W-Z, Su Y-T, Ma L, Hao T, Yang Z-X (2015) Coupled hidden conditional random fields for rgb-d human action recognition. Signal Process 112:74–82
Liu A,Wang Z, NieW, Su Y (2015) Graph-based characteristic view set extraction and matching for 3D model retrieval. Inf Sci 320:429–442
Nie W-Z, Liu A-A, Gao Z, Su Y-T (2015) Clique-graph matching by preserving global & local structure. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4503– 4510
Nie W-Z, Liu A-A, Su Y-T (2015) 3d object retrieval based on sparse coding in weak supervision. J Vis Commun Image Represent
Ohbuchi Ryutarou, Furuya Takahiko (2009) Scale-weighted dense bag of visual features for 3d model retrieval from a partial view 3d model. In: IEEE 12th international conference on computer vision workshops (ICCV Workshops), 2009. IEEE, pp 63–70
Ohbuchi R, Osada K, Furuya T, Banno T (2008) Salient local visual features for shape-based 3d model retrieval. In: IEEE international conference on shape modeling and applications, 2008. SMI 2008. IEEE, pp 93–102
Paquet E, Rioux M, Murching A, Naveen T, Tabatabai A (2000) Description of shape information for 2-d and 3-d objects. Signal Process Image Commun 16(1):103–122
Regli WC, Cicirello VA (2000) Managing digital libraries for computer-aided design. Comput Aided Des 32(2):119–132
Shih J-L, Lee C-H, Wang JT (2007) A new 3d model retrieval approach based on the elevation descriptor. Pattern Recogn 40(1):283–295
Shilane P, Min P, Kazhdan M, Funkhouser T (2004) The princeton shape benchmark. In: Proceedings of shape modeling applications, 2004. IEEE, pp 167–178
Sundar H, Silver D, Gagvani N, Dickinson S (2003) Skeleton based shape matching and retrieval. In: Shape modeling international, 2003. IEEE, pp 130–139
Tangelder JWH, Veltkamp RC (2003) Polyhedral model retrieval using weighted point sets. Int J Image Graph 3(01):209–229
Wang F, Li F, Dai Q, Er G (2008) View-based 3d object retrieval and recognition using tangent subspace analysis. In: Electronic imaging 2008. International Society for Optics and Photonics, pp 68220I– 68220I
Wang X, Nie W (2015) 3d model retrieval with weighted locality-constrained group sparse coding. Neurocomputing 151:620–625
Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406
Wong H-S, Ma B, Yu Z, Yeung PF, Ip HHS (2007) 3-d head model retrieval using a single face view query. IEEE Trans Multimedia 9(5):1026–1036
Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensics Secur 11(11): 2594–2608
Acknowledgments
This work was supported in part by the National Natural Science Foundation of China (61502337, 61472275, 61170239, 61303208), the Tianjin Research Program of Application Foundation and Advanced Technology (15JCYBJC162000), and the grant of Elite Scholar Program of Tianjin University (2014XRG-0046).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Cao, Q., An, Y., Shi, Y. et al. Sparse representation-based 3D model retrieval. Multimed Tools Appl 76, 20069–20079 (2017). https://doi.org/10.1007/s11042-016-4238-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-016-4238-9