[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Hybrid group recommendations for a travel service

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recommendation techniques have proven their usefulness as a tool to cope with the information overload problem in many classical domains such as movies, books, and music. Additional challenges for recommender systems emerge in the domain of tourism such as acquiring metadata and feedback, the sparsity of the rating matrix, user constraints, and the fact that traveling is often a group activity. This paper proposes a recommender system that offers personalized recommendations for travel destinations to individuals and groups. These recommendations are based on the users’ rating profile, personal interests, and specific demands for their next destination. The recommendation algorithm is a hybrid approach combining a content-based, collaborative filtering, and knowledge-based solution. For groups of users, such as families or friends, individual recommendations are aggregated into group recommendations, with an additional opportunity for users to give feedback on these group recommendations. A group of test users evaluated the recommender system using a prototype web application. The results prove the usefulness of individual and group recommendations and show that users prefer the hybrid algorithm over each individual technique. This paper demonstrates the added value of various recommendation algorithms in terms of different quality aspects, compared to an unpersonalized list of the most-popular destinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ardissono L, Goy A, Petrone G, Segnan M, Torasso P (2002) Tailoring the recommendation of tourist information to heterogeneous user groups. In: Reich S, Tzagarakis M, De Bra P (eds) Hypermedia: openness, structural awareness, and adaptivity, lecture notes in computer science, vol 2266. Springer, Berlin Heidelberg, pp 228–231.doi:10.1007/3-540-45844-1_26

    Google Scholar 

  2. Bollen D, Knijnenburg BP, Willemsen MC, Graus M (2010) Understanding choice overload in recommender systems. In: Proceedings of the fourth ACM conference on recommender systems, RecSys ’10. ACM, New York, pp 63–70. doi:10.1145/1864708.1864724

  3. Buhalis D, Law R (2008) Progress in information technology and tourism management: 20 years on and 10 years after the internet–the state of etourism research. Tour Manag 29(4):609–623. doi:10.1016/j.tourman.2008.01.005. http://www.sciencedirect.com/science/article/pii/S0261517708000162

    Article  Google Scholar 

  4. Burke R (2002) Hybrid recommender systems: survey and experiments. User Model User-Adap Inter 12(4):331–370. doi:10.1023/A%1021240730564

    Article  MATH  Google Scholar 

  5. Burke R (2007) Hybrid web recommender systems. In: The adaptive web. Springer, pp 377–408

  6. De Pessemier T, Dooms S, Deryckere T, Martens L (2010) Time dependency of data quality for collaborative filtering algorithms. In: Proceedings of the fourth ACM conference on recommender systems, RecSys ’10. ACM, New York, pp 281–284. doi:10.1145/1864708.1864767

  7. De Pessemier T, Dooms S, Martens L (2014) Comparison of group recommendation algorithms. Multimed Tools Appl 72(3):2497–2541. doi:10.1007/s11042-013-1563-0

    Article  Google Scholar 

  8. De Pessemier T, Dooms S, Martens L (2014) Context-aware recommendations through context and activity recognition in a mobile environment. Multimed Tools Appl 72(3):2925–2948. doi:10.1007/s11042-013-1582-x

    Article  Google Scholar 

  9. Desrosiers C, Karypis G (2011) A comprehensive survey of neighborhood-based recommendation methods. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, USA, pp 107–144. doi:10.1007/978-0-387-85820-3_4

    Chapter  Google Scholar 

  10. Ekstrand MD, Ludwig M, Kolb J, Riedl JT (2011) Lenskit: a modular recommender framework. In: Proceedings of the fifth ACM conference on recommender systems, RecSys ’11. ACM, New York, pp 349–350. doi:10.1145/2043932.2044001

  11. Felfernig A, Burke R (2008) Constraint-based recommender systems: technologies and research issues. In: Proceedings of the 10th international conference on electronic commerce, ICEC ’08. ACM, New York, pp 3:1–3:10. doi:10.1145/1409540.1409544

  12. Garcia I, Sebastia L, Onaindia E (2011) On the design of individual and group recommender systems for tourism. Expert Syst Appl 38(6):7683–7692. doi:10.1016/j.eswa.2010.12.143. http://www.sciencedirect.com/science/article/pii/S095741741001506X

    Article  Google Scholar 

  13. GeoNames: The geonames geographical database (2015). Available at http://www.geonames.org/

  14. Gibson H, Yiannakis A (2002) Tourist roles: needs and the lifecourse. Ann Tour Res 29(2):358–383. doi:10.1016/S0160-7383(01)00037-8. http://www.sciencedirect.com/science/article/pii/S0160738301000378

    Article  Google Scholar 

  15. Gogobot Inc: the go-to place for places to go (2015). Available at http://Gogobot.com/

  16. Jameson A (2004) More than the sum of its members: challenges for group recommender systems. In: Proceedings of the working conference on advanced visual interfaces, AVI ’04. ACM, New York, pp 48–54. doi:10.1145/989863.989869

  17. Jameson A, Baldes S, Kleinbauer T (2004) Two methods for enhancing mutual awareness in a group recommender system. In: Proceedings of the working conference on Advanced visual interfaces, AVI ’04. ACM, New York, pp 447–449. doi:10.1145/989863.989948

  18. Kay J, Niu W (2006) Adapting information delivery to groups of people. In: Proceedings of the workshop on new technologies for personalized information access at the tenth international conference on user modeling. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.4976

  19. Liu Q, Chen E, Xiong H, Ge Y, Li Z, Wu X (2014) A cocktail approach for travel package recommendation. IEEE Trans Knowl Data Eng 26 (2):278–293. doi:10.1109/TKDE.2012.233

    Article  Google Scholar 

  20. Liu Q, Ge Y, Li Z, Chen E, Xiong H (2011) Personalized travel package recommendation. In: 2011 IEEE 11th international conference on data mining (ICDM), pp 407–416. doi:10.1109/ICDM.2011.118

  21. Lucas J P, Luz N, Moreno M N, Anacleto R, Figueiredo A A, Martins C (2013) A hybrid recommendation approach for a tourism system. Expert Syst Appl 40(9):3532–3550. doi:10.1016/j.eswa.2012.12.061. http://www.sciencedirect.com/science/article/pii/S0957417412013024

    Article  Google Scholar 

  22. Manning C D, Raghavan P, Schütze H et al (2008) Introduction to information retrieval, vol 1. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  23. Martinez L, Rodriguez R, Espinilla M (2009) Reja: a georeferenced hybrid recommender system for restaurants. In: IEEE/WIC/ACM international joint conferences on web intelligence and intelligent agent technologies. WI-IAT ’09, vol 3, pp 187–190. doi:10.1109/WI-IAT.2009.259

  24. Masthoff J (2004) Group modeling: selecting a sequence of television items to suit a group of viewers. In: Personalized digital television, Human-Computer Interaction Series, vol 6. Springer, Netherlands, pp 93–141. doi:10.1007/1-4020-2164-X_5

  25. McCarthy J (2002) Pocket restaurantfinder: a situated recommender system for groups. In: Proceedings of the workshop on mobile AdHoc communication at the 2002 ACM conference on human factors in computer systems. ACM

  26. McCarthy K, Salamo M, Coyle L, McGinty L, Smyth B, Nixon P (2006) Cats: a synchronous approach to collaborative group recommendation. In: Sutcliffe G, Goebel R (eds) FLAIRS conference. AAAI Press, pp 86–91. http://dblp.uni-trier.de/db/conf/flairs/flairs2006.html#McCarthySCMSN06

  27. Moreno A, Sebastiá L, Vansteenwegen P (2015) Tours’15: workshop on tourism recommender systems. In: Proceedings of the 9th ACM conference on recommender systems, RecSys ’15. ACM, New York, pp 355–356. doi:10.1145/2792838.2798713

  28. Petrevska B, Koceski S (2012) Tourism recommendation system: empirical investigation. Revista de Turism-studii si Cercetari in Turism (14):11–18

  29. Pu P, Chen L, Hu R (2011) A user-centric evaluation framework for recommender systems. In: Proceedings of the fifth ACM conference on recommender systems, RecSys ’11. ACM, New York, pp 157–164. doi:10.1145/2043932.2043962

  30. Resnick P, Varian HR (1997) Recommender systems. Commun ACM 40 (3):56–58. doi:10.1145/245108.245121

    Article  Google Scholar 

  31. Ricci F (2002) Travel recommender systems. IEEE Intell Syst 17(6):55–57

    Google Scholar 

  32. Ricci F, Rokach L, Shapira B, Kantor PB (2010) Recommender systems handbook, 1st edn. Springer, New York

    MATH  Google Scholar 

  33. Ricci F, Werthner H (2001) Case base querying for travel planning recommendation. Inf Technol Tour 4(3-4):215–226

    Article  Google Scholar 

  34. Rome2rio: Rome2rio api and whitelabel (2015). Available at http://www.rome2rio.com/documentation

  35. TripAdvisor Inc: Tripadvisor website (2015). Available at http://www.tripadvisor.com/

  36. Wang S, Xie Y, Fang M (2011) A collaborative filtering recommendation algorithm based on item and cloud model. Wuhan University J Nat Sci 16(1):16–20. doi:10.1007/s11859-011-0704-4

    Article  Google Scholar 

  37. Wikivoyage Inc: Wikivoyage the free worldwide travel guide that anyone can edit (2015). Available at http://dumps.wikimedia.org/enwikivoyage/

  38. Yu C, Lakshmanan L, Amer-Yahia S (2009) Recommendation diversification using explanations. In: IEEE 25th international conference on data engineering, 2009. ICDE ’09, pp 1299–1302. doi:10.1109/ICDE.2009.225

  39. Zanker M, Jessenitschnig M (2009) Collaborative feature-combination recommender exploiting explicit and implicit user feedback. In: IEEE conference on commerce and enterprise computing, 2009. CEC ’09. pp. 49–56. doi:10.1109/CEC.2009.84

Download references

Acknowledgments

We would like to thank Jeroen Dhondt for the work he performed in the context of this research during his master thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toon De Pessemier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pessemier, T.D., Dhondt, J. & Martens, L. Hybrid group recommendations for a travel service. Multimed Tools Appl 76, 2787–2811 (2017). https://doi.org/10.1007/s11042-016-3265-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3265-x

Keywords

Navigation