[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Choice of Metric Divergence in Genome Sequence Comparison

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The paper introduces a novel probability descriptor for genome sequence comparison, employing a generalized form of Jensen-Shannon divergence. This divergence metric stems from a one-parameter family, comprising fractions up to a maximum value of half. Utilizing this metric as a distance measure, a distance matrix is computed for the new probability descriptor, shaping Phylogenetic trees via the neighbor-joining method. Initial exploration involves setting the parameter at half for various species. Assessing the impact of parameter variation, trees drawn at different parameter values (half, one-fourth, one-eighth). However, measurement scales decrease with parameter value increments, with higher similarity accuracy corresponding to lower scale values. Ultimately, the highest accuracy aligns with the maximum parameter value of half. Comparative analyses against previous methods, evaluating via Symmetric Distance (SD) values and rationalized perception, consistently favor the present approach's results. Notably, outcomes at the maximum parameter value exhibit the most accuracy, validating the method's efficacy against earlier approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Phillips A, Janies D, Wheeler W (2000) Multiple sequence alignment in phylogenetic analysis. Mol Phylogenet Evol 16(3):317–330. https://doi.org/10.1006/mpev.2000.0785

    Article  CAS  PubMed  Google Scholar 

  2. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Katoh K et al (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. https://doi.org/10.1093/nar/gkf436

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vinga S, Almeida J (2003) Alignment-free sequence comparison—A review. Bioinformatics 19(4):513–523. https://doi.org/10.1093/bioinformatics/btg005

    Article  CAS  PubMed  Google Scholar 

  5. Domazet-Lošo M, Haubold B (2011) Alignment-free detection of local similarity among viral and bacterial genomes. Bioinformatics 27(11):1466–1472. https://doi.org/10.1093/bioinformatics/btr176

    Article  CAS  PubMed  Google Scholar 

  6. Gates MA (1986) A simple way to look at DNA. J Theor Biol 119(3):319–328. https://doi.org/10.1016/s0022-5193(86)80144-8

    Article  CAS  PubMed  Google Scholar 

  7. Nandy A (1994) A new graphical representation and analysis of DNA sequence structure: I. Methodology and application to globin genes. Curr Sci 66:309–314

    CAS  Google Scholar 

  8. Leong PM, Morgenthaler S (1995) Random walk and gap plots of DNA sequences. Bioinformatics 11(5):503–507. https://doi.org/10.1093/bioinformatics/11.5.503

    Article  CAS  Google Scholar 

  9. Guo X, Randic M, Basak SC (2001) A novel 2-D graphical representation of DNA sequences of low degeneracy. Chem Phys Lett 350(1–2):106–112. https://doi.org/10.1016/S0009-2614(01)01246-5

    Article  CAS  Google Scholar 

  10. Yau SS et al (2003) DNA sequence representation without degeneracy. Nucleic Acids Res 31(12):3078–3080. https://doi.org/10.1093/nar/gkg432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liao Bo (2005) A 2D graphical representation of DNA sequence. Chem Phys Lett 401(1–3):196–199. https://doi.org/10.1016/j.cplett.2004.11.059

    Article  CAS  Google Scholar 

  12. Liao Bo, Tan M, Ding K (2005) Application of 2-D graphical representation of DNA sequence. Chem Phys Lett 414(4–6):296–300. https://doi.org/10.1016/J.CPLETT.2005.08.079

    Article  CAS  Google Scholar 

  13. Song J, Tang H (2005) A new 2-D graphical representation of DNA sequences and their numerical characterization. J Biochem Biophys Methods 63(3):228–239. https://doi.org/10.1016/j.jbbm.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  14. Randić M et al (2003) Novel 2-D graphical representation of DNA sequences and their numerical characterization. Chem Phys Lett 368(1–2):1–6. https://doi.org/10.1016/S0009-2614(02)01784-0

    Article  Google Scholar 

  15. Randić M et al (2003) Analysis of similarity/dissimilarity of DNA sequences based on novel 2-D graphical representation. Chem Phys Lett 371(1–2):202–207. https://doi.org/10.1016/S0009-2614(03)00244-6

    Article  CAS  Google Scholar 

  16. Yao Y-H, Liao Bo, Wang T-M (2005) A 2D graphical representation of RNA secondary structures and the analysis of similarity/dissimilarity based on it. J Mol Struct (Thoechem) 755(1–3):131–136. https://doi.org/10.1016/j.theochem.2005.08.009

    Article  CAS  Google Scholar 

  17. Randić M et al (2000) On 3-D graphical representation of DNA primary sequences and their numerical characterization. J Chem Inf Comput Sci 40(5):1235–1244. https://doi.org/10.1021/ci000034q

    Article  CAS  PubMed  Google Scholar 

  18. Nandy A, Nandy P (1995) Graphical analysis of DNA sequence structure: II. Relative abundances of nucleotides in DNAs, gene evolution and duplication. Curr Sci 68:75–85

    CAS  Google Scholar 

  19. Yao Y-H, Nan X-Y, Wang T-M (2006) A new 2D graphical representation—Classification curve and the analysis of similarity/dissimilarity of DNA sequences. J Mol Struct (Thoechem) 764(1–3):101–108. https://doi.org/10.1016/j.theochem.2006.02.007

    Article  CAS  Google Scholar 

  20. Das S, Pal J, Bhattacharya DK (2015) Geometrical method of exhibiting similarity/dissimilarity under new 3D classification curves and establishing significance difference of different parameters of estimation. Intl J Adv Res Comp Sci SoftwEngg 5:279–287

    Google Scholar 

  21. Randić M et al (2001) On characterization of proteomics maps and chemically induced changes in proteomes using matrix invariants: application to peroxisome proliferators. Med Chem Res 10(7–8):456–479

    Google Scholar 

  22. Qi Z-H, Fan T-R (2007) PN-curve: A 3D graphical representation of DNA sequences and their numerical characterization. Chem Phys Lett 442(4–6):434–440. https://doi.org/10.1016/j.cplett.2007.06.029

    Article  CAS  Google Scholar 

  23. Akhtar M, Epps J, Ambikairajah E (2008) Signal processing in sequence analysis: advances in eukaryotic gene prediction. IEEE J Selected Topics Signal Process 2(3):310–321. https://doi.org/10.1109/JSTSP.2008.923854

    Article  Google Scholar 

  24. Chakravarthy N et al (2004) Autoregressive modeling and feature analysis of DNA sequences. EURASIP J Adv Signal Process 2004(1):1–16. https://doi.org/10.1155/S111086570430925X

    Article  Google Scholar 

  25. Chi R, Ding K (2005) Novel 4D numerical representation of DNA sequences. Chem Phys Lett 407(1–3):63–67. https://doi.org/10.1016/j.cplett.2005.03.056

    Article  CAS  Google Scholar 

  26. Nieto JJ, Torres A, Vázquez-Trasande MM (2003) A metric space to study differences between polynucleotides. Appl Math Lett 16(8):1289–1294. https://doi.org/10.1016/S0893-9659(03)90131-5

    Article  Google Scholar 

  27. Nieto JJ et al (2006) Fuzzy polynucleotide spaces and metrics. Bull Math Biol 68(3):703–725. https://doi.org/10.1007/s11538-005-9020-5

    Article  CAS  PubMed  Google Scholar 

  28. Torres A, Nieto JJ (2003) The fuzzy polynucleotide space: basic properties. Bioinformatics 19(5):587–592. https://doi.org/10.1093/bioinformatics/btg032

    Article  CAS  PubMed  Google Scholar 

  29. Sadegh-Zadeh K (2000) Fuzzy genomes. Artif Intell Med 18(1):1–28. https://doi.org/10.1016/s0933-3657(99)00032-9

    Article  CAS  PubMed  Google Scholar 

  30. Kong S-G, Kosko B (1992) Adaptive fuzzy systems for backing up a truck-and-trailer. IEEE Trans Neural Networks 3(2):211–223. https://doi.org/10.1109/72.125862

    Article  CAS  PubMed  Google Scholar 

  31. Qi X et al (2011) A novel model for DNA sequence similarity analysis based on graph theory. Evolut Bioinformatics 7:EBO-S7364. https://doi.org/10.4137/EBO.S7364

    Article  Google Scholar 

  32. Das S et al (2020) A new graph-theoretic approach to determine the similarity of genome sequences based on nucleotide triplets. Genomics 112(6):4701–4714. https://doi.org/10.1016/j.ygeno.2020.08.023

    Article  CAS  PubMed  Google Scholar 

  33. Das S et al (2018) Optimal choice of k-mer in composition vector method for genome sequence comparison. Genomics 110(5):263–273. https://doi.org/10.1016/j.ygeno.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  34. Afreixo V et al (2009) Genome analysis with inter-nucleotide distances. Bioinformatics 25(23):3064–3070. https://doi.org/10.1093/bioinformatics/btp546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tavares A et al. Detection of exceptional genomic words: a comparison between species. No. 63. EasyChair, 2018.

  36. Tavares H et al (2017) DNA word analysis based on the distribution of the distances between symmetric words. Sci Rep 7(1):728

    Article  PubMed  PubMed Central  Google Scholar 

  37. Goldberger AL, Peng CK (2005) Genomic classification using an information-based similarity index: application to the SARS coronavirus. J Comput Biol 12(8):1103–1116. https://doi.org/10.1089/cmb.2005.12.1103

    Article  PubMed  Google Scholar 

  38. Pham TD, Zuegg J (2004) A probabilistic measure for alignment-free sequence comparison. Bioinformatics 20(18):3455–3461. https://doi.org/10.1093/bioinformatics/bth426

    Article  CAS  PubMed  Google Scholar 

  39. Kullback S (1968) Information theory and statistics. Dover Publi Inc, New York

    Google Scholar 

  40. Jeffreys H (1946) An invariant form for the prior probability in estimation problems. Proce Royal Soc London Series A Math Phys Sci 186(1007):453–461

    CAS  Google Scholar 

  41. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  Google Scholar 

  42. Lin J (1991) Divergence measures based on the Shannon entropy. IEEE Trans Inf Theory 37(1):145–151. https://doi.org/10.1109/18.61115

    Article  Google Scholar 

  43. Lu J, Henchion M, MacNamee B. Extending jensen shannon divergence to compare multiple corpora. InMcAuley, J., McKeever, S.(eds.). Proceedings of the 25th Irish Conference on Artificial Intelligence and Cognitive Science 2017. CEUR-WS. org..

  44. Lu G (2013) A class of new metrics for n-dimensional unit hypercube. J Appl Math. https://doi.org/10.1155/2013/942687

    Article  Google Scholar 

  45. Das S et al (2013) Some anomalies in the analysis of whole genome sequence on the basis of Fuzzy set theory. Int J Artif Intell Neural Netw 3(2):38–41

    Google Scholar 

  46. Ghosh S et al (2023) A method of genome sequence comparison based on a new form of fuzzy polynucleotide space Frontiers of ICT in Healthcare. Proceedings of EAIT 2022. Springer Nature Singapore, Singapore, pp 125–135

    Google Scholar 

  47. Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  48. Yu C, Deng M, Yau SS (2011) DNA sequence comparison by a novel probabilistic method. Information Sci 181(8):1484–1492. https://doi.org/10.1016/j.ins.2010.12.010

    Article  Google Scholar 

  49. Robinson DF, Foulds LR (1981) Comparison of phylogenetic trees. Math Biosci 53(1–2):131–147

    Article  Google Scholar 

  50. Felsenstein, J. (2005). PHYLIP (phylogeny inference package) Distributed by the author. Dept. Genome Sci., Univ. Wash., Seattle Version, 3.

Download references

Author information

Authors and Affiliations

Authors

Contributions

SG: Design and development of the work and finalization of draft. JP: Data collection, analysis and interpretation. BM: Initial drafting the article. CC: Critical revision of the article after final draft. DKB: Concepttion of the work and critical revision of the article after final draft.

Corresponding author

Correspondence to Soumen Ghosh.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Pal, J., Maji, B. et al. Choice of Metric Divergence in Genome Sequence Comparison. Protein J 43, 259–273 (2024). https://doi.org/10.1007/s10930-024-10189-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-024-10189-x

Keywords

Navigation