Abstract
In this paper, we concentrate on the robust tensor completion (RTC) problem, which aims to recover a low-rank tensor from partial observations corrupted by sparse noise. Most existing methods for RTC utilize the tensor nuclear norm (TNN) to evaluate the tensor rank. However, the TNN often yields biased solutions due to its loose approximation for the tensor rank. To solve this problem, we derive a unified non-convex surrogate that better approximates the tensor rank. Our surrogate is composed of several non-convex penalty functions. Further, we propose a generalized non-convex model, which minimizes a weighted combination of the unified non-convex surrogate and the \(\ell _1\)-norm data fidelity term. To solve the proposed model, we devise a simple but efficient algorithm called the proximal alternating difference of convex functions (PADCF) algorithm. Moreover, we prove the sequence generated by the PADCF algorithm converges to the critical point under some mild conditions. Numerical experiments are provided for illustrations and comparisons.
Similar content being viewed by others
Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable request.
References
Qin, W., Wang, H., Zhang, F., Wang, J., Luo, X., Huang, T.: Low-rank high-order tensor completion with applications in visual data. IEEE Trans. Image Process. 31, 2433–2448 (2022)
Shi, C., Huang, Z., Wan, L., Xiong, T.: Low-rank tensor completion based on log-det rank approximation and matrix factorization. J. Sci. Comput. 80(3), 1888–1912 (2019)
Duan, S., Duan, X., Zhao, X.: A new tensor multi-rank approximation with total variation regularization for tensor completion. J. Sci. Comput. 93(3), 1–31 (2022)
Jiang, B., Ma, S., Zhang, S.: Low-m-rank tensor completion and robust tensor pca. In: IEEE Journal of Selected Topics in Signal Processing (2018)
Yang, M., Luo, Q., Li, W., Xiao, M.: Nonconvex 3d array image data recovery and pattern recognition under tensor framework. Pattern Recogn. 122, 108311 (2022)
Zhao, Y., Yun, Y., Zhang, X., Li, Q., Gao, Q.: Multi-view spectral clustering with adaptive graph learning and tensor Schatten p-norm. Neurocomputing 468, 257–264 (2022)
Xia, W., Gao, Q., Wang, Q., Gao, X.: Tensor completion-based incomplete multiview clustering. IEEE Trans. Cybern. (2022)
Fan, H., Chen, Y., Guo, Y., Zhang, H., Kuang, G.: Hyperspectral image restoration using low-rank tensor recovery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 10(10), 4589–4604 (2017)
Bentbib, A.H., Khouia, A., Sadok, H.: Color image and video restoration using tensor cp decomposition. BIT Numer. Math. 1–22 (2022)
Madathil, B., George, S.N.: Twist tensor total variation regularized-reweighted nuclear norm based tensor completion for video missing area recovery. Inf. Sci. 423, 376–397 (2018)
Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)
Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis. J. ACM (JACM) 58(3), 1–37 (2011)
Cherapanamjeri, Y., Gupta, K., Jain, P.: Nearly optimal robust matrix completion. In: International Conference on Machine Learning. PMLR, pp. 797–805 (2017)
Klopp, O., Lounici, K., Tsybakov, A.B.: Robust matrix completion. Probab. Theory Relat. Fields 169(1), 523–564 (2017)
Zeng, W., So, H.C.: Outlier-robust matrix completion via \(\ell _p\)-minimization. IEEE Trans. Signal Process. 66(5), 1125–1140 (2017)
He, Y., Wang, F., Li, Y., Qin, J., Chen, B.: Robust matrix completion via maximum correntropy criterion and half-quadratic optimization. IEEE Trans. Signal Process. 68, 181–195 (2019)
Goldfarb, D., Qin, Z.: Robust low-rank tensor recovery: models and algorithms. SIAM J. Matrix Anal. Appl. 35(1), 225–253 (2014)
Yokota, T., Zhao, Q., Cichocki, A.: Smooth parafac decomposition for tensor completion. IEEE Trans. Signal Process. 64(20), 5423–5436 (2016)
Kiers, H.A.: Towards a standardized notation and terminology in multiway analysis. J. Chemom. A J. Chemom. Soc. 14(3), 105–122 (2000)
Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)
Shang, K., Li, Y., Huang, Z.: Iterative p-shrinkage thresholding algorithm for low tucker rank tensor recovery. Inf. Sci. 482, 374–391 (2019)
Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)
Martin, C.D., Shafer, R., LaRue, B.: An order-p tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35(1), A474–A490 (2013)
Kilmer, M.E., Braman, K., Hao, Z., Hoover, R., Kim, S., Kolda, T.G., Ovall, J.S., Stanton, K.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)
Kernfeld, E., Kilmer, M., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)
Lu, C., Peng, X., Wei, Y.: Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5996–6004 (2019)
Song, G., Ng, M.K., Zhang, X.: Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebra Appl. 27(3), e2299 (2020)
Jiang, T., Ng, M.K., Zhao, X., Huang, T.: Framelet representation of tensor nuclear norm for third-order tensor completion. IEEE Trans. Image Process. 29, 7233–7244 (2020)
Jiang, Q., Ng, M.: Robust low-tubal-rank tensor completion via convex optimization. In: IJCAI, pp. 2649–2655 (2019)
Zhao, X., Bai, M., Ng, M.K.: Nonconvex optimization for robust tensor completion from grossly sparse observations. J. Sci. Comput. 85(2), 1–32 (2020)
Qiu, D., Bai, M., Ng, M.K., Zhang, X.: Robust low-rank tensor completion via transformed tensor nuclear norm with total variation regularization. Neurocomputing 435, 197–215 (2021)
Chen, L., Jiang, X., Liu, X., Zhou, Z.: Robust low-rank tensor recovery via nonconvex singular value minimization. IEEE Trans. Image Process. 29, 9044–9059 (2020)
Gao, S., Fan, Q.: Robust Schatten norm based approach for tensor completion. J. Sci. Comput. 82, 1–23 (2020)
Li, M., Li, W., Chen, Y., Xiao, M.: The nonconvex tensor robust principal component analysis approximation model via the weighted \(\ell _p\)-norm regularization. J. Sci. Comput. 89(3), 67 (2021)
Yang, Y., Han, L., Liu, Y., Zhu, J., Yan, H.: A novel regularized model for third-order tensor completion. IEEE Trans. Signal Process. 69, 3473–3483 (2021)
Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. Siam J. Matrix Anal. Appl. 34(1) (2013)
Parikh, N., Boyd, S., et al.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)
Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4(7), 932–946 (1995)
Trzasko, J., Manduca, A.: Highly undersampled magnetic resonance image reconstruction via homotopic \(\ell _0\)-minimization. IEEE Trans. Med. Imaging 28(1), 106–121 (2008)
Fazel, M., Hindi, H., Boyd, S.P.: Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. In: Proceedings of the 2003 American Control Conference, 2003, vol. 3, pp. 2156–2162. IEEE (2003)
Zhang, C.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)
Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)
Lou, Y., Yin, P., Xin, J.: Point source super-resolution via non-convex \(\ell _1\)-based methods. J. Sci. Comput. 68(3), 1082–1100 (2016)
Tao, P.D., An, L.H.: Convex analysis approach to dc programming: theory, algorithms and applications. Acta Math. Vietnam 22(1), 289–355 (1997)
Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1), 91–129 (2013)
Gao, Q., Zhang, P., Xia, W., Xie, D., Gao, X., Tao, D.: Enhanced tensor rpca and its application. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2133–2140 (2020)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Shivakumar, B., Rajashekararadhya, S.: Performance evaluation of spectral angle mapper and spectral correlation mapper classifiers over multiple remote sensor data. In: 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–6. IEEE (2017)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)
Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19(9), 2241–2253 (2010)
Acknowledgements
The authors would like to thank the reviewers for their very helpful comments and suggestions.
Funding
This work was supported by the National Natural Science Foundation of China (61877046, 12271419) and the Fundamental Research Funds for the Central Universities (YJSJ23003).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, Z., Liu, S. & Lin, Z. A Generalized Non-convex Method for Robust Tensor Completion. J Sci Comput 96, 91 (2023). https://doi.org/10.1007/s10915-023-02308-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-023-02308-0