[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Generalized Non-convex Method for Robust Tensor Completion

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we concentrate on the robust tensor completion (RTC) problem, which aims to recover a low-rank tensor from partial observations corrupted by sparse noise. Most existing methods for RTC utilize the tensor nuclear norm (TNN) to evaluate the tensor rank. However, the TNN often yields biased solutions due to its loose approximation for the tensor rank. To solve this problem, we derive a unified non-convex surrogate that better approximates the tensor rank. Our surrogate is composed of several non-convex penalty functions. Further, we propose a generalized non-convex model, which minimizes a weighted combination of the unified non-convex surrogate and the \(\ell _1\)-norm data fidelity term. To solve the proposed model, we devise a simple but efficient algorithm called the proximal alternating difference of convex functions (PADCF) algorithm. Moreover, we prove the sequence generated by the PADCF algorithm converges to the critical point under some mild conditions. Numerical experiments are provided for illustrations and comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Notes

  1. https://www.cs.columbia.edu/CAVE/databases/multispectral/.

  2. https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html.

  3. https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Indian_Pines.

  4. http://media.xiph.org/video/derf/.

References

  1. Qin, W., Wang, H., Zhang, F., Wang, J., Luo, X., Huang, T.: Low-rank high-order tensor completion with applications in visual data. IEEE Trans. Image Process. 31, 2433–2448 (2022)

    Google Scholar 

  2. Shi, C., Huang, Z., Wan, L., Xiong, T.: Low-rank tensor completion based on log-det rank approximation and matrix factorization. J. Sci. Comput. 80(3), 1888–1912 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Duan, S., Duan, X., Zhao, X.: A new tensor multi-rank approximation with total variation regularization for tensor completion. J. Sci. Comput. 93(3), 1–31 (2022)

    MathSciNet  MATH  Google Scholar 

  4. Jiang, B., Ma, S., Zhang, S.: Low-m-rank tensor completion and robust tensor pca. In: IEEE Journal of Selected Topics in Signal Processing (2018)

  5. Yang, M., Luo, Q., Li, W., Xiao, M.: Nonconvex 3d array image data recovery and pattern recognition under tensor framework. Pattern Recogn. 122, 108311 (2022)

    Google Scholar 

  6. Zhao, Y., Yun, Y., Zhang, X., Li, Q., Gao, Q.: Multi-view spectral clustering with adaptive graph learning and tensor Schatten p-norm. Neurocomputing 468, 257–264 (2022)

    Google Scholar 

  7. Xia, W., Gao, Q., Wang, Q., Gao, X.: Tensor completion-based incomplete multiview clustering. IEEE Trans. Cybern. (2022)

  8. Fan, H., Chen, Y., Guo, Y., Zhang, H., Kuang, G.: Hyperspectral image restoration using low-rank tensor recovery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 10(10), 4589–4604 (2017)

    Google Scholar 

  9. Bentbib, A.H., Khouia, A., Sadok, H.: Color image and video restoration using tensor cp decomposition. BIT Numer. Math. 1–22 (2022)

  10. Madathil, B., George, S.N.: Twist tensor total variation regularized-reweighted nuclear norm based tensor completion for video missing area recovery. Inf. Sci. 423, 376–397 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis. J. ACM (JACM) 58(3), 1–37 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Cherapanamjeri, Y., Gupta, K., Jain, P.: Nearly optimal robust matrix completion. In: International Conference on Machine Learning. PMLR, pp. 797–805 (2017)

  14. Klopp, O., Lounici, K., Tsybakov, A.B.: Robust matrix completion. Probab. Theory Relat. Fields 169(1), 523–564 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Zeng, W., So, H.C.: Outlier-robust matrix completion via \(\ell _p\)-minimization. IEEE Trans. Signal Process. 66(5), 1125–1140 (2017)

    Google Scholar 

  16. He, Y., Wang, F., Li, Y., Qin, J., Chen, B.: Robust matrix completion via maximum correntropy criterion and half-quadratic optimization. IEEE Trans. Signal Process. 68, 181–195 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Goldfarb, D., Qin, Z.: Robust low-rank tensor recovery: models and algorithms. SIAM J. Matrix Anal. Appl. 35(1), 225–253 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Yokota, T., Zhao, Q., Cichocki, A.: Smooth parafac decomposition for tensor completion. IEEE Trans. Signal Process. 64(20), 5423–5436 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Kiers, H.A.: Towards a standardized notation and terminology in multiway analysis. J. Chemom. A J. Chemom. Soc. 14(3), 105–122 (2000)

    Google Scholar 

  20. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    MathSciNet  Google Scholar 

  21. Shang, K., Li, Y., Huang, Z.: Iterative p-shrinkage thresholding algorithm for low tucker rank tensor recovery. Inf. Sci. 482, 374–391 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Martin, C.D., Shafer, R., LaRue, B.: An order-p tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35(1), A474–A490 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Kilmer, M.E., Braman, K., Hao, Z., Hoover, R., Kim, S., Kolda, T.G., Ovall, J.S., Stanton, K.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Kernfeld, E., Kilmer, M., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Lu, C., Peng, X., Wei, Y.: Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5996–6004 (2019)

  27. Song, G., Ng, M.K., Zhang, X.: Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebra Appl. 27(3), e2299 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Jiang, T., Ng, M.K., Zhao, X., Huang, T.: Framelet representation of tensor nuclear norm for third-order tensor completion. IEEE Trans. Image Process. 29, 7233–7244 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Jiang, Q., Ng, M.: Robust low-tubal-rank tensor completion via convex optimization. In: IJCAI, pp. 2649–2655 (2019)

  30. Zhao, X., Bai, M., Ng, M.K.: Nonconvex optimization for robust tensor completion from grossly sparse observations. J. Sci. Comput. 85(2), 1–32 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Qiu, D., Bai, M., Ng, M.K., Zhang, X.: Robust low-rank tensor completion via transformed tensor nuclear norm with total variation regularization. Neurocomputing 435, 197–215 (2021)

    Google Scholar 

  32. Chen, L., Jiang, X., Liu, X., Zhou, Z.: Robust low-rank tensor recovery via nonconvex singular value minimization. IEEE Trans. Image Process. 29, 9044–9059 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Gao, S., Fan, Q.: Robust Schatten norm based approach for tensor completion. J. Sci. Comput. 82, 1–23 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Li, M., Li, W., Chen, Y., Xiao, M.: The nonconvex tensor robust principal component analysis approximation model via the weighted \(\ell _p\)-norm regularization. J. Sci. Comput. 89(3), 67 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Yang, Y., Han, L., Liu, Y., Zhu, J., Yan, H.: A novel regularized model for third-order tensor completion. IEEE Trans. Signal Process. 69, 3473–3483 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. Siam J. Matrix Anal. Appl. 34(1) (2013)

  37. Parikh, N., Boyd, S., et al.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Google Scholar 

  38. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4(7), 932–946 (1995)

    Google Scholar 

  39. Trzasko, J., Manduca, A.: Highly undersampled magnetic resonance image reconstruction via homotopic \(\ell _0\)-minimization. IEEE Trans. Med. Imaging 28(1), 106–121 (2008)

    Google Scholar 

  40. Fazel, M., Hindi, H., Boyd, S.P.: Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. In: Proceedings of the 2003 American Control Conference, 2003, vol. 3, pp. 2156–2162. IEEE (2003)

  41. Zhang, C.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Lou, Y., Yin, P., Xin, J.: Point source super-resolution via non-convex \(\ell _1\)-based methods. J. Sci. Comput. 68(3), 1082–1100 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Tao, P.D., An, L.H.: Convex analysis approach to dc programming: theory, algorithms and applications. Acta Math. Vietnam 22(1), 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  45. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1), 91–129 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Gao, Q., Zhang, P., Xia, W., Xie, D., Gao, X., Tao, D.: Enhanced tensor rpca and its application. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2133–2140 (2020)

    Google Scholar 

  48. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  49. Shivakumar, B., Rajashekararadhya, S.: Performance evaluation of spectral angle mapper and spectral correlation mapper classifiers over multiple remote sensor data. In: 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–6. IEEE (2017)

  50. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

  51. Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19(9), 2241–2253 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their very helpful comments and suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (61877046, 12271419) and the Fundamental Research Funds for the Central Universities (YJSJ23003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhechen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, S. & Lin, Z. A Generalized Non-convex Method for Robust Tensor Completion. J Sci Comput 96, 91 (2023). https://doi.org/10.1007/s10915-023-02308-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02308-0

Keywords

Navigation