Abstract
Robust discretization methods for (nearly-incompressible) linear elasticity are free of volume-locking and gradient-robust. While volume-locking is a well-known problem that can be dealt with in many different discretization approaches, the concept of gradient-robustness for linear elasticity is new: it assures that dominant gradient fields in the momentum balance do not lead to spurious displacements. We discuss both aspects and propose novel Hybrid Discontinuous Galerkin (HDG) methods for linear elasticity. The starting point for these methods is a divergence-conforming discretization. As a consequence of its well-behaved Stokes limit the method is gradient-robust and free of volume-locking. To improve computational efficiency, we additionally consider discretizations with relaxed divergence-conformity and a modification which re-enables gradient-robustness, yielding a robust and quasi-optimal discretization also in the sense of HDG superconvergence.
Similar content being viewed by others
References
Ahmed, N., Linke, A., Merdon, C.: On really locking-free mixed finite element methods for the transient incompressible Stokes equations. SIAM J. Numer. Anal., pp. 185–209 (2018)
Akbas, M., Gallouet, T., Gassmann, A., Linke, A., Merdon, C.: A gradient-robust well-balanced scheme for the compressible isothermal Stokes problem. arXiv:1911.01295, (2019)
Akbas, M., Linke, A., Rebholz, L.G., Schroeder, P.W.: The analogue of grad-div stabilization in DG methods for incompressible flows: limiting behavior and extension to tensor-product meshes. Comput. Methods Appl. Mech. Eng. 341, 917–938 (2018)
Arnold, D.N., Brezzi, F., Douglas Jr., J.: PEERS: a new mixed finite element for plane elasticity. Jpn J. Appl. Math. 1, 347–367 (1984)
Arnold, D.N., Douglas Jr., J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45, 1–22 (1984)
Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76, 1699–1723 (2007)
Arnold, D. N., Qin, J.: Quadratic velocity/linear pressure stokes elements, in Advances in Computer Methods for Partial Differential Equations VII, IMACS, pp. 28–34 (1992)
Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92, 401–419 (2002)
Arnold, D.N., Winther, R.: Nonconforming mixed elements for elasticity. Math. Models Methods Appl. Sci. 13, 295–307 (2003)
Auricchio, F., Beirão da Veiga, L., Lovadina, C., Reali, A.: A stability study of some mixed finite elements for large deformation elasticity problems. Comput. Methods Appl. Mech. Eng. 194, 1075–1092 (2005)
Auricchio, F., Beirão da Veiga, L., Lovadina, C., Reali, A.: The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput. Methods Appl. Mech. Eng. 199, 314–323 (2010)
Auricchio, F., Beirão da Veiga, L., Lovadina, C., Reali, A., Taylor, R.L., Wriggers, P.: Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52, 1153–1167 (2013)
Auricchio, F., da Veiga, L.B.a, Buffa, A., Lovadina, C., Reali, A., Sangalli, G.: A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput. Methods Appl. Mech. Eng. 197, 160–172 (2007)
Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51, 794–812 (2013)
Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)
Braess, D.: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer, Berlin (2013)
Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comput. 73, 1067–1087 (2004)
Brenner, S.C., Sung, L.-Y.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–338 (1992)
Chertock, A., Dudzinski, M., Kurganov, A., Lukáčová-Medviďová, M.: Well-balanced schemes for the shallow water equations with Coriolis forces. Numer. Math. 138, 939–973 (2018)
Cockburn, B., Fu, G.: Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by \(M\)-decompositions. IMA J. Numer. Anal. 38, 566–604 (2018)
Cockburn, B., Kanschat, G., Schotzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095 (2005)
Cockburn, B., Schötzau, D., Wang, J.: Discontinuous Galerkin methods for incompressible elastic materials. Comput. Methods Appl. Mech. Eng. 195, 3184–3204 (2006)
Cockburn, B., Shi, K.: Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J. Numer. Anal. 33, 747–770 (2013)
Cotter, C.J., Thuburn, J.: A finite element exterior calculus framework for the rotating shallow-water equations. J. Comput. Phys. 257, 1506–1526 (2014)
Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)
Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016)
Elguedj, T., Bazilevs, Y., Calo, V., Hughes, T.: \(\overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order nurbs elements. Comput. Methods Appl. Mech. Eng. 197, 2732–2762 (2008)
Falk, R.S.: Nonconforming finite element methods for the equations of linear elasticity. Math. Comput. 57, 529–550 (1991)
Frerichs, D., Merdon, C.: Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the stokes problem, (2020)
Fu, G.: A high-order HDG method for the Biot’s consolidation model. Comput. Math. Appl. 77, 237–252 (2019)
Fu, G., Lehrenfeld, C.: A strongly conservative hybrid DG/mixed FEM for the coupling of Stokes and Darcy flow. J. Sci. Comput. 77, pp. 1605–1620
Fu, G., Lehrenfeld, C., Linke, A., Streckenbach, T.: Locking free and gradient robust H(div)-conforming HDG methods for linear elasticity. arXiv:2001.08610, (2020)
Gauger, N.R., Linke, A., Schroeder, P.W.: On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond. SMAI J. Comput. Math. 5, 89–129 (2019)
Gerbeau, J.-F., Le Bris, C., Bercovier, M.: Spurious velocities in the steady flow of an incompressible fluid subjected to external forces. Internat. J. Numer. Methods Fluids 25, 679–695 (1997)
Gopalakrishnan, J., Guzmán, J.: Symmetric nonconforming mixed finite elements for linear elasticity. SIAM J. Numer. Anal. 49, 1504–1520 (2011)
Gosse, L., Leroux, A.-Y.: Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes, C. R. Acad. Sci. Paris Sér. I Math. 323, 543–546 (1996)
Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)
Guzmán, J., Neilan, M.: Symmetric and conforming mixed finite elements for plane elasticity using rational bubble functions. Numer. Math. 126, 153–171 (2014)
Guzmán, J., Shu, C.-W., Sequeira, F.A.: \({{\rm H(div)}}\) conforming and DG methods for incompressible Euler’s equations. IMA J. Numer. Anal. 37, 1733–1771 (2017)
Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895–1908 (2002)
Hansbo, P., Larson, M.G.: Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity, M2AN Math. Model. Numer. Anal. 37, 63–72 (2003)
Haupt, P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)
Hong, Q., Kraus, J., Xu, J., Zikatanov, L.: A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations. Numer. Math. 132, 23–49 (2016)
Hughes, T.J., Cohen, M., Haroun, M.: Reduced and selective integration techniques in the finite element analysis of plates. Nuclear Eng. Des. 46, 203–222 (1978)
Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)
John, V.: Finite Element Methods for Incompressible Flow Problems. Springer, Berlin (2016)
John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59, 492–544 (2017)
Kanschat, G., Riviere, B.: A finite element method with strong mass conservation for Biot’s linear consolidation model. J. Sci. Comput. 77, 1762–1779 (2018)
Kreuzer, C., Verfürth, R., Zanotti, P.: Quasi-optimal and pressure robust discretizations of the Stokes equations by moment- and divergence-preserving operators. arXiv:2002.11454, (2020)
Lederer, P.L., Lehrenfeld, C., Schöberl, J.: Hybrid discontinuous Galerkin methods with relaxed \(H({\rm div})\)-conformity for incompressible flows. Part I. SIAM J. Numer. Anal. 56, 2070–2094 (2018)
Lederer, P.L., Lehrenfeld, C., Schöberl, J.: Hybrid discontinuous Galerkin methods with relaxed \(H({\rm div})\)-conformity for incompressible flows. Part II. ESAIM Math. Model. Numer. Anal. 53, 503–522 (2019)
Lederer, P.L., Linke, A., Merdon, C., Schöberl, J.: Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements. SIAM J. Numer. Anal. 55, 1291–1314 (2017)
Lederer, P.L., Schöberl, J.: Polynomial robust stability analysis for \(H({\rm div})\)-conforming finite elements for the Stokes equations. IMA J. Numer. Anal. 38, 1832–1860 (2018)
Lehrenfeld, C., Galerkin, Hybrid Discontinuous, methods for solving incompressible flow problems, : Diploma Thesis. MathCCES/IGPM, RWTH Aachen (2010)
Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307, 339–361 (2016)
Linke, A.: A divergence-free velocity reconstruction for incompressible flows. C. R. Math. Acad. Sci. Paris 350, 837–840 (2012)
Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782–800 (2014)
Linke, A., Matthies, G., Tobiska, L.: Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors. ESAIM Math. Model. Numer. Anal. 50, 289–309 (2016)
Linke, A., Merdon, C.: On velocity errors due to irrotational forces in the Navier-Stokes momentum balance. J. Comput. Phys. 313, 654–661 (2016)
Linke, A., Merdon, C.: Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 311, 304–326 (2016)
Malkus, D.S., Hughes, T.J.: Mixed finite element methods – reduced and selective integration techniques: A unification of concepts. Comput. Methods Appl. Mech. Eng. 15, 63–81 (1978)
Marquardt, O., Boeck, S., Freysoldt, C., Hickel, T., Schulz, S., Neugebauer, J., O’Reilly, E.P.: A generalized plane-wave formulation of k.p formalism and continuum-elasticity approach to elastic and electronic properties of semiconductor nanostructures. Comput. Mater. Sci. 95, 280–287 (2014)
Natale, A., Shipton, J., Cotter, C.J.: Compatible finite element spaces for geophysical fluid dynamics. Dyn. Stat. Climate Syst. 1, (2016)
Noelle, S., Pankratz, N., Puppo, G., Natvig, J.R.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213, 474–499 (2006)
Olshanskii, M.A., Rebholz, L.G.: Application of barycenter refined meshes in linear elasticity and incompressible fluid dynamics. Electron. Trans. Numer. Anal. 38, 258–274 (2011)
Pechstein, A., Schöberl, J.: Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 21, 1761–1782 (2011)
Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87, 69–93 (2018)
Schöberl, J., C++11 Implementation of Finite Elements in NGSolve, : ASC Report 30/2014. Vienna University of Technology, Institute for Analysis and Scientific Computing (2014)
Schroeder, P.W., Lehrenfeld, C., Linke, A., Lube, G.: Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier-Stokes equations. SeMA J. 75, 629–653 (2018)
Scott, L.R., Vogelius, M., Conforming finite element methods for incompressible, and nearly incompressible continua, in Large-scale computations in fluid mechanics, Part 2 (La Jolla, Calif., : vol. 22 of Lectures in Appl. Math., Amer. Math. Soc. Providence, RI 1985, 221–244 (1983)
Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19, 111–143 (1985)
Soon, S.-C., Cockburn, B., Stolarski, H.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 80, 1058–1092 (2009)
Verfürth, R., Zanotti, P.: A quasi-optimal Crouzeix-Raviart discretization of the Stokes equations. SIAM J. Numer. Anal. 57, 1082–1099 (2019)
Vogelius, M.: An analysis of the \(p\)-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal error estimates. Numer. Math. 41, 39–53 (1983)
Wihler, T.: Locking-free adaptive discontinuous galerkin fem for linear elasticity problems. Math. Comput. 75, 1087–1102 (2006)
Zhang, S.: A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74, 543–554 (2005)
Zhang, S.: On the P1 Powell-Sabin divergence-free finite element for the Stokes equations. J. Comput. Math. 26, 456–470 (2008)
Zhang, S.: Divergence-free finite elements on tetrahedral grids for \(k\ge 6\). Math. Comput. 80, 669–695 (2011)
Zhang, S.: Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids. Calcolo 48, 211–244 (2011)
Zienkiewics, O.C., Taylor, R.L., Too, J.M.: Reduced integration techniques in general analysis of plates and shells. Int. J. Numer. Meth. Eng. 5, 275–290 (1971)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
G. Fu gratefully acknowledge the partial support of this work from U.S. National Science Foundation through Grant DMS-2012031.
Appendix. The BDM Interpolator for Discontinuous Functions
Appendix. The BDM Interpolator for Discontinuous Functions
The BDM interpolator for discontinuous functions is defined element-by-element for \(\varvec{v}_T \in {\varvec{H}}^1(T)\) through
with \(\varvec{{\mathcal {N}}}^{k-2}:=[{\mathbb {P}}^{k-2}(T)]^d + [{\mathbb {P}}^{k-2}(T)]^d \times x\) and \(\{\!\!\{ \cdot \}\!\!\}_*\) the usual DG average operator, cf. [21, 39].
Rights and permissions
About this article
Cite this article
Fu, G., Lehrenfeld, C., Linke, A. et al. Locking-Free and Gradient-Robust \({\varvec{H}}({{\,\mathrm{{\text {div}}}\,}})\)-Conforming HDG Methods for Linear Elasticity. J Sci Comput 86, 39 (2021). https://doi.org/10.1007/s10915-020-01396-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01396-6
Keywords
- Linear elasticity
- Nearly incompressible
- Locking phenomenon
- Volume-locking
- Gradient-robustness
- Discontinuous Galerkin
- \({\varvec{H}}\) (div)-conforming HDG