[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Sequential tests for non-proportional hazards data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

In clinical trials survival endpoints are usually compared using the log-rank test. Sequential methods for the log-rank test and the Cox proportional hazards model are largely reported in the statistical literature. When the proportional hazards assumption is violated the hazard ratio is ill-defined and the power of the log-rank test depends on the distribution of the censoring times. The average hazard ratio was proposed as an alternative effect measure, which has a meaningful interpretation in the case of non-proportional hazards, and is equal to the hazard ratio, if the hazards are indeed proportional. In the present work we prove that the average hazard ratio based sequential test statistics are asymptotically multivariate normal with the independent increments property. This allows for the calculation of group-sequential boundaries using standard methods and existing software. The finite sample characteristics of the new method are examined in a simulation study in a proportional and a non-proportional hazards setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen PK (1993) Statistical models based on counting processes. Springer, New York

    Book  MATH  Google Scholar 

  • Bauer P, Posch M (2004) Letter to the editor on “Modification of the sample size and the schedule of interim analyses in survival trials based on data inspections”. Stat Med 23(8):1333–1334. doi:10.1002/sim.1759

    Article  Google Scholar 

  • Billingsley P (2009) Convergence of probability measures. Wiley, New York

  • Brückner M (2015) AHR: estimation and testing of average hazard ratios. R package version 1.3. http://cran.r-project.org/package=AHR. Accessed 31 Oct 2015

  • Jennison C, Turnbull BW (1999) Group sequential methods with applications to clinical trials. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Kalbfleisch JD, Prentice RL (1981) Estimation of the average hazard ratio. Biometrika 68(1):105–112

    Article  MathSciNet  MATH  Google Scholar 

  • Li Z (1999) A group sequential test for survival trials: an alternative to rank-based procedures. Biometrics 55(1):277–283

    Article  MathSciNet  MATH  Google Scholar 

  • Malani HM (1995) A modification of the redistribution to the right algorithm using disease markers. Biometrika 82(3):515–526

    Article  MathSciNet  MATH  Google Scholar 

  • McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, Clarke-Pearson DL, Davidson M (1996) Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 334(1):1–6

    Article  Google Scholar 

  • Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M (2009) Gefitinib or carboplatin paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957

    Article  Google Scholar 

  • Murray S, Tsiatis AA (1996) Nonparametric survival estimation using prognostic longitudinal covariates. Biometrics 52(1):137–151

    Article  MATH  Google Scholar 

  • Murray S, Tsiatis AA (1999) Sequential methods for comparing years of life saved in the two-sample censored data problem. Biometrics 55(4):1085–1092

    Article  MATH  Google Scholar 

  • Murray S, Tsiatis AA (2001) Using auxiliary time-dependent covariates to recover information in nonparametric testing with censored data. Lifetime Data Anal 7(2):125–141

    Article  MathSciNet  MATH  Google Scholar 

  • Oza AM, Cook AD, Pfisterer J, Embleton A, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, Park-Simon TW, Rustin G, Joly F, Mirza MR, Plante M, Quinn M, Poveda A, Jayson GC, Stark D, Swart AM, Farrelly L, Kaplan R, Parmar MKB, Perren TJ (2015) Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial. Lancet Oncol 16(8):928–936

    Article  Google Scholar 

  • Pepe MS, Fleming TR (1989) Weighted Kaplan–Meier statistics: a class of distance tests for censored survival data. Biometrics 45(2):497

    Article  MathSciNet  MATH  Google Scholar 

  • Putter H, Sasako M, Hartgrink HH, van de Velde CJH, van Houwelingen JC (2005) Long-term survival with non-proportional hazards: results from the Dutch Gastric Cancer Trial. Stat Med 24(18):2807–2821

    Article  MathSciNet  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing, version 3.2.2 (released 14.08.2015). R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Sellke T, Siegmund D (1983) Sequential analysis of the proportional hazards model. Biometrika 70(2):315–326

    Article  MathSciNet  MATH  Google Scholar 

  • Shen Y, Fleming TR (1997a) Large sample properties of some survival estimators in heterogeneous samples. J Stat Plan Inference 60(1):123–138

    Article  MathSciNet  MATH  Google Scholar 

  • Shen Y, Fleming TR (1997b) Weighted mean survival test statistics: a class of distance tests for censored survival data. J R Stat Soc B 59(1):269–280

    Article  MathSciNet  MATH  Google Scholar 

  • Struthers CA, Kalbfleisch JD (1986) Misspecified proportional hazard models. Biometrika 73(2):363–369

    Article  MathSciNet  MATH  Google Scholar 

  • Tsiatis AA, Rosner GL, Tritchler DL (1985) Group sequential tests with censored survival data adjusting for covariates. Biometrika 72(2):365–373

    Article  MathSciNet  MATH  Google Scholar 

  • Wassmer G (2006) Planning and analyzing adaptive group sequential survival trials. Biom J 48(4):714–729

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the Associate Editor and a Reviewer for their comments, which have substantially improved the paper. This work was supported by the Program “Mathematics for Innovations in Industry and Services” of the German Federal Ministry of Education and Research (BMBF) under Grant 05M13VHC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Brückner.

Appendix: Proofs

Appendix: Proofs

Proof (Proof of Theorem 1)

Following the arguments of Kalbfleisch and Prentice (1981) for the Kaplan–Meier estimator, we have in the general case

$$\begin{aligned} n^{1/2}\left\{ \hat{x}_1(t) - x_1\right\}= & {} -\int _0^L n^{1/2}\left\{ \hat{S}_0(t,\,s) - S_0(s)\right\} S_1(ds)\nonumber \\&+ \int _0^L n^{1/2}\left\{ \hat{S}_1(t,\,s) - S_1(s)\right\} S_0(ds)\nonumber \\&- n^{1/2}\left\{ \hat{S}_1(t,\,L) - S_1(L)\right\} S_0(L) + o_p(1), \end{aligned}$$
(8)

and

$$\begin{aligned} n^{1/2}\{\hat{G}(t,\,L) - G(L)\}= & {} S_1(L)n^{1/2}\left\{ \hat{S}_0(t,\,L) - S_0(L)\right\} \nonumber \\&+ S_0(L)n^{1/2}\left\{ \hat{S}_1(t,\,L) - S_1(L)\right\} + o_p(1). \end{aligned}$$
(9)

Define the linear map \(\phi {\text {:}}\,(D[0,\,L])^{2K} \rightarrow \mathbb {R}^{2K}\) by

$$\begin{aligned} \begin{pmatrix} X_{01} \\ \vdots \\ X_{0K} \\ X_{11} \\ \vdots \\ X_{1K} \end{pmatrix} \mapsto \begin{pmatrix} -\int _0^L X_{01}(s) S_1(ds) + \int _0^L X_{11}(s) S_0(ds) - X_{11}(L)S_0(L) \\ S_1(L)X_{01}(L)) + S_0(L)X_{11}(L)\\ \vdots \\ -\int _0^L X_{0K}(s) S_1(ds) + \int _0^L X_{0K}(s) S_0(ds) - X_{0K}(L)S_0(L) \\ S_1(L)X_{0K}(L) + S_0(L)X_{1K}(L) \end{pmatrix}. \end{aligned}$$

From Assumptions 14 it follows that \(n^{1/2}\{\hat{S}_i(t_l,\,\cdot ) - S_i(\cdot )\}\) converges weakly to a mean zero Gaussian process \(U_i(t_l,\, \cdot )\) with covariance function \(\nu _i^{-1}\rho _i(t_l,\,\cdot ,\,\cdot )\) as \(n\rightarrow \infty \) for each \(l=1,\ldots ,K.\) The covariance of any two of these processes is

$$\begin{aligned} \text {cov}\left\{ U_i(t,\, s),\, U_j(t^\prime ,\, s^\prime )\right\} = I(i = j) \nu _i^{-1} \rho _i(t \wedge t^\prime ,\, s,\, s^\prime ), \end{aligned}$$
(10)

because of the independence of the samples and Assumption  3. Define the vectors

$$\begin{aligned} \mathbf {U}= & {} \left\{ U_0\left( t_1,\,\cdot \right) , \ldots , U_0\left( t_K,\,\cdot \right) ,\, U_1\left( t_1,\,\cdot \right) , \ldots , U_1\left( t_K,\,\cdot \right) \right\} ,\\ \mathbf {S^{(n)}}= & {} \left\{ \hat{S}_0\left( t_1,\,\cdot \right) , \ldots , \hat{S}_0\left( t_K,\,\cdot \right) ,\, \hat{S}_1\left( t_1,\,\cdot \right) , \ldots , \hat{S}_1\left( t_K,\,\cdot \right) \right\} ,\\ \mathbf {S}= & {} \left\{ S_0(\cdot ), \ldots , S_0(\cdot ),\, S_1(\cdot ), \ldots , S_1(\cdot )\right\} . \end{aligned}$$

It then follows from Eqs. (8) and (9) and the continuous mapping theorem, that as \(n \rightarrow \infty \)

$$\begin{aligned} \begin{pmatrix} n^{1/2}\{\hat{x}_1(t_1) - x_1\} \\ n^{1/2}\{\hat{G}(t_1,\, L) - G(L)\}\\ \vdots \\ n^{1/2}\{\hat{x}_1(t_K) - x_1\} \\ n^{1/2}\{\hat{G}(t_K,\, L) - G(L)\} \end{pmatrix} = n^{1/2}\left\{ \mathbf {\phi \left( \mathbf {S}^{(n)}\right) } - \mathbf {\phi (\mathbf {S})}\right\} \mathop {\longrightarrow }\limits ^{\mathcal {L}} \mathbf {\phi (\mathbf {U})}. \end{aligned}$$

Since \(\phi \) is linear, the vector \(\mathbf {\phi (\mathbf {U})}\) has a multivariate normal distribution with mean zero and covariance matrix

$$\begin{aligned} \mathbf {\Sigma _\theta } = \begin{pmatrix} \mathbf {\Sigma (t_1)} &{} \mathbf {\Sigma (t_2)} &{} \cdots &{} \mathbf {\Sigma (t_K)} \\ &{} \mathbf {\Sigma (t_2)} &{} &{} \vdots \\ &{} &{} \ddots &{} \\ &{} &{} &{} \mathbf {\Sigma (t_K)} \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} \mathbf {\Sigma (t)} = \begin{pmatrix} V_x(t) &{} V_{xG}(t) \\ V_{xG}(t) &{} V_G(t) \end{pmatrix}. \end{aligned}$$

The covariance matrix \(\mathbf {\Sigma _\theta }\) can be derived using Eq. (10) and Fubini’s theorem. The claimed asymptotic normality now follows by noting that

$$\begin{aligned} n(t)^{1/2}\left\{ \hat{\theta }_1(t) - \theta _1\right\} = \pi (t)^{1/2}n^{1/2}\left\{ \hat{\theta }_1(t) - \theta _1\right\} + o_p(1). \end{aligned}$$

Consistency of the variance estimator follows from the uniform consistency of \(\hat{S}_i,\) by Assumption 2, and \(\hat{\rho }_i,\) by Assumption 4 (\(i=0,\,1\)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brückner, M., Brannath, W. Sequential tests for non-proportional hazards data. Lifetime Data Anal 23, 339–352 (2017). https://doi.org/10.1007/s10985-016-9360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-016-9360-5

Keywords

Navigation