[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Synthesis and electric field-assisted sintering behavior of Al2O3–ZrO2 composite nanopowders by polyacrylamide gel method

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Al2O3–ZrO2 composite ceramic nanopowders were synthesized using a polyacrylamide gel method. The mean particle size of the Al2O3–ZrO2 nanopowders was found to decrease with increasing mole ratio of monomer to the precursor salt. The Al2O3–ZrO2 nanopowders with mean particle size of 10 nm can be densified in 1 h at 965 °C, by application of a dc electrical field. Under a constant dc electrical field, the current density through the sample of Al2O3–ZrO2 rose rapidly when the temperature increased to a certain value. In the sintering process, the current density was restricted when a sharp increase occurred. It was found that current density had a great effect on the sintering process in electric field-assisted sintering. Joule heating was proposed to be the main mechanism of the electric field-assisted sintering process.

Graphical Abstract

The Al2O3–ZrO2 composite ceramic nanopowders were synthesized using a polyacrylamide gel method. The Al2O3–ZrO2 nanopowders can be densified in 1 h at low temperature, by the application of a dc electrical field. Under a constant dc electrical field, the current density through the sample of Al2O3–ZrO2 rose rapidly when the temperature increased to a certain value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi SR, Bansal NP (2005) Ceram Int 31:39–46

    Article  Google Scholar 

  2. Tuan WH, Chen RZ, Wang TC, Cheng CH, Kuo PS (2002) J Eur Ceram Soc 22:2827–2833

    Article  Google Scholar 

  3. Bansal NP, Zhu D (2005) Ceram Int 31:911–916

    Article  Google Scholar 

  4. Smuk B, Szutkowska M, Walter J (2003) J Mater Process Technol 133:195–198

    Article  Google Scholar 

  5. Piconi C, Maccauro G (1999) Biomaterials 20:1–25

    Article  Google Scholar 

  6. Chandradass J, Bae DS (2009) J Alloys Compd 469:L10–L12

    Article  Google Scholar 

  7. Sarkar D, Adak S, Mitra NK (2007) Compos A 38:124–131

    Article  Google Scholar 

  8. Kong YM, Kim HE, Kim HW (2007) J Am Ceram Soc 90:298–302

    Article  Google Scholar 

  9. Panchula ML, Ying JY (1997) Nanostruct Mater 9:161–164

    Article  Google Scholar 

  10. Avilda DM, Muccillo ENS (1995) Thermochim Acta 256:391–398

    Article  Google Scholar 

  11. Bhaduri S, Zhou E, Bhaduri SB (1996) Nanostruct Mater 7:487–496

    Article  Google Scholar 

  12. Biamino S, Fino P, Pavese M, Badini C (2006) Ceram Int 32:509–513

    Article  Google Scholar 

  13. Chandradass J, Yoon JH, Bae DS (2008) Mater Manuf Process 23:138–142

    Article  Google Scholar 

  14. Piticescu RR, Monty C, Taloi D, Motoc A, Axinte S (2001) J Eur Ceram Soc 21:2057–2060

    Article  Google Scholar 

  15. Srdic VV, Winterer M, Miehe G, Hahn H (1999) Nanostruct Mater 12:95–100

    Article  Google Scholar 

  16. Chandradass J, Yoon JH, Bae D (2008) Mater Sci Eng A 473:360–364

    Article  Google Scholar 

  17. Cologna M, Prette ALG, Raj R (2011) J Am Ceram Soc 94:316–319

    Article  Google Scholar 

  18. Schmerbauch C, Gonzalez Julian J, Röder Ronning RC, Guillon O (2014) J Am Ceram Soc 97:1728–1735

    Article  Google Scholar 

  19. Muccillo ENS, Muccillo R (2014) J Eur Ceram Soc 34:915–923

    Article  Google Scholar 

  20. Jiang T, Wang Z, Zhang J, Hao X, Rooney D, Liu Y, Sun W, Qiao J, Sun K (2015) J Am Ceram Soc 98:1717–1723

    Article  Google Scholar 

  21. Ejtemaei M, Tavakoli A, Charchi N, Bayati B, Babaluo AA, Bayat Y (2014) Adv Powder Technol 25:840–846

    Article  Google Scholar 

  22. Wang SF, Lv HB, Zhou XS, Fu YQ, Zu XT (2014) Nanosci Nanotechol Lett 6:1–13

    Article  Google Scholar 

  23. Hassanzadeh-Tabrizi SA (2014) J Ceram Process Res 15:207–211

    Google Scholar 

  24. Wen HL, Chen YY, Yen FS, Huang CY (1999) Nanostruct Mater 11:89–101

    Article  Google Scholar 

  25. Li J, Sun X (2000) Acta Mater 48:3103–3112

    Article  Google Scholar 

  26. Su X, Li S, Li J (2010) J Am Ceram Soc 93:1904–1908

    Article  Google Scholar 

  27. Shukla S, Seal S (2004) J Phys Chem B 108:3395–3399

    Article  Google Scholar 

  28. Borchers L, Stiesch M, Bach FW, Buhl JC, Hübsch C, Kellner T, Kohorst P, Jendras M (2010) Acta Biomater 6:4547–4552

    Article  Google Scholar 

  29. Chen L, Mashimo T, Omurzak E, Okudera H, Iwamoto C, Yoshiasa A (2011) J Phys Chem C 115:9370–9375

    Article  Google Scholar 

  30. Ross IM, Rainforth WM, McComb DW, Scott AJ, Brydson R (2001) Scr Mater 45:653–660

    Article  Google Scholar 

  31. Li P, Chen I-W, Penner-Hahn JE (1994) J Am Ceram Soc 77:118–128

    Article  Google Scholar 

  32. Srdić VV, Winterer M, Hahn H (2000) J Am Ceram Soc 83:1853–1860

    Article  Google Scholar 

  33. Wang H, Gao L, Li W, Li Q (1999) Nanostruct Mater 11:1263–1267

    Article  Google Scholar 

  34. Li J, Ye Y (2006) J Am Ceram Soc 89:139–143

    Article  Google Scholar 

  35. Matsui K, Yoshida H, Ikuhara Y (2010) J Eur Ceram Soc 30:1679–1690

    Article  Google Scholar 

  36. Pulgarin HLC, Albano MP (2014) Ceram Int 40:5289–5298

    Article  Google Scholar 

  37. Raj R (2012) J Eur Ceram Soc 32:2293–2301

    Article  Google Scholar 

  38. Francis JSC, Cologna M, Raj R (2012) J Eur Ceram Soc 32:3129–3136

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 51102022, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No. 2015JQ5149, the China Postdoctoral Science Foundation under Grant No. 2015M582584, and the Special Fund for Basic Research support programs of Chang’an University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghua Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Zhou, J., Wang, B. et al. Synthesis and electric field-assisted sintering behavior of Al2O3–ZrO2 composite nanopowders by polyacrylamide gel method. J Sol-Gel Sci Technol 80, 126–132 (2016). https://doi.org/10.1007/s10971-016-4085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4085-1

Keywords