Abstract
We prove that every strongly quasiconvex function is 2-supercoercive (in particular, coercive). Furthermore, we investigate the usual properties of proximal operators for strongly quasiconvex functions. In particular, we prove that the set of fixed points of the proximal operator coincides with the unique minimizer of a lower semicontinuous strongly quasiconvex function. As a consequence, we implement the proximal point algorithm for finding the unique solution of the minimization problem of a strongly quasiconvex function by using a positive sequence of parameters bounded away from 0 and, in particular, we revisit the general quasiconvex case. Moreover, a new characterization for convex functions is derived from this analysis. Finally, an application for a strongly quasiconvex function which is neither convex nor differentiable nor locally Lipschitz continuous is provided.
Similar content being viewed by others
References
Aragón-Artacho, F.J., Fleming, R.M.T., Vuong, P.T.: Accelerating the DC algorithm for smooth functions. Math. Program. 169, 95–118 (2018)
Arjevani, Y., Shalev-Shwartz, S., Shamir, O.: On lower and upper bounds in smooth and strongly convex optimization. J. Mach. Learn. Res. 17, 1–51 (2016)
Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)
Aybat, N.S., Fallah, A., Gürbüzbalaban, M., Ozdaglar, A.: Robust accelerated gradient methods for smooth strongly convex functions. SIAM. J. Optim. 30, 717–751 (2020)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operators Theory in Hilbert Spaces. CMS Books in Mathematics, 2nd edn. Springer, Berlin (2017)
Beck, A.: First Order Methods in Optimization. Series on Optimization. SIAM, Philadelphia (2017)
Brito, A.S., Neto, JX Da Cruz., Lopes, J.O., Oliveira, P.R.: Interior proximal algorithm for quasiconvex programming problems and variational inequalities with linear constraints. J. Optim. Theory Appl. 154, 217–234 (2012)
Cambini, R., Carosi, L.: Coercivity concepts and recession function in constrained problems. Int. J. Math. Sci. 2, 83–96 (2003)
Combettes, P.L., Pennanen, T.: Proximal methods for cohypomonotone operators. SIAM J. Control Optim. 43, 731–742 (2004)
Crouzeix, J.P.: A review of continuity and differentiability properties of quasiconvex functions on \(\mathbb{R}^{n}\). In: Aubin, J.P., Vinter, R. (Eds.), Convex Analysis and Optimization. Research Notes in Mathematics, vol. 57, Pitman, pp. 18–34 (1982)
Crouzeix, J.P., Ferland, J.A., Zălinescu, C.: \(\alpha \)-convex sets and strong quasiconvexity. Math. Oper. Res. 22, 998–1022 (1997)
Da Cruz Neto, J.X., Da Silva, G., Ferreira, O., Lopez, J.: A subgradient method for multiobjective optimization. Comp. Optim. Appl. 54, 461–472 (2013)
Davis, D., Grimmer, B.: Proximally guided stochastic sbgradient method for nonsmooth, nonconvex problems. SIAM J. Optim. 29, 1908–1930 (2019)
Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization I: a generic algorithmic framework. SIAM. J. Optim. 22, 1469–1492 (2012)
Grad, S.-M., Lara, F.: An extension of proximal point algorithms beyond convexity. J. Glob.Optim. (2021). https://doi.org/10.1007/s10898-021-01081-4
Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Program. 116, 221–258 (2009)
Hazan, E., Kale, S.: Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex optimization. J. Mach. Learn. Res. 15, 2489–2512 (2014)
Hiriart-Urruty, J.B.: Generalized Differentiability, Duality, and Optimization for Problems Dealing with Differences of Convex Functions, Lecture Notes in Econ. and Math. Syst., vol. 256, pp. 37–69. Springer
Iusem, A., Pennanen, T., Svaiter, B.F.: Inexact variants of the proximal point algorithm without monotonicity. SIAM. J. Optim. 13, 1080–1097 (2003)
Jovanović, M.: On strong quasiconvex functions and boundedness of level sets. Optimization 20, 163–165 (1989)
Jovanović, M.: A note on strongly convex and quasiconvex functions. Math. Notes 60, 584–585 (1996)
Karamardian, S.: Strictly quasi-convex (concave) functions and duality in mathematical programming. J. Math. Anal. Appl. 20, 344–358 (1967)
Kiwiel, K.C.: Convergence and efficiency of subgradient methods for quasiconvex minimization. Math. Program. Ser. A 90, 1–25 (2001)
Langenberg, N., Tichatschke, R.: Interior proximal methods for quasiconvex optimization. J. Glob. Optim. 52, 641–661 (2012)
Lewis, A.S., Wright, S.J.: A proximal method for composite minimization. Math. Program. 158, 501–546 (2016)
Mangasarian, O.L.: Pseudo-convex functions. J. SIAM Control Ser. A 3, 281–290 (1965)
Martinet, B.: Regularisation d’inequations variationelles par approximations successives. Rev. Francaise Inf. Rech. Oper. 154–159,(1970)
Martinet, B.: Determination approchée d’un point fixe d’une application pseudo-contractante. C.R. Acad. Sci. Paris, 274, 163–165 (1972)
Pan, S., Chen, J.-S.: Entropy-like proximal algorithms based on a second-order homogeneous distance function for quasi-convex programming. J. Glob. Optim. 39, 555–575 (2007)
Quiroz, E.A., Papa, R., L Mallma, O.P.R.: An inexact proximal method for quasiconvex minimization: Eur. J. Oper. Res. 246, 721–729 (2015)
Papa Quiroz, E.A., Oliveira, P.R.: An extension of proximal methods for quasiconvex minimization on the nonnegative orthant. Eur. J. Oper. Res. 216, 26–32 (2012)
Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 170–191 (2002)
Poljak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math. 7, 72–75 (1966)
Rockafellar, R.T.: Monotone operators and proximal point algorithms. SIAM J. Control Optim. 14, 877–898 (1976)
Vial, J.P.: Strong convexity of sets and functions. J. Math. Econ. 9, 187–205 (1982)
Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8, 231–259 (1983)
Vladimirov, A.A., Nesterov, Y.E., Chekanov, Y.N.: On uniformly quasiconvex functionals. Vestn Mosk. Un-ta. vyehisl. matem. i kiber. 4, 18–27 (1978)
Wang, G., Lu, S., Tu, W., Zhang, L.: SAdam: A variant of Adam for strongly convex functions (2020). arXiv:1905.02957
Acknowledgements
This research was partially supported by Conicyt–Chile under project Fondecyt Iniciación 11180320 (Lara).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Fabián Flores-Bazán.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lara, F. On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms. J Optim Theory Appl 192, 891–911 (2022). https://doi.org/10.1007/s10957-021-01996-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-021-01996-8