[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We prove that every strongly quasiconvex function is 2-supercoercive (in particular, coercive). Furthermore, we investigate the usual properties of proximal operators for strongly quasiconvex functions. In particular, we prove that the set of fixed points of the proximal operator coincides with the unique minimizer of a lower semicontinuous strongly quasiconvex function. As a consequence, we implement the proximal point algorithm for finding the unique solution of the minimization problem of a strongly quasiconvex function by using a positive sequence of parameters bounded away from 0 and, in particular, we revisit the general quasiconvex case. Moreover, a new characterization for convex functions is derived from this analysis. Finally, an application for a strongly quasiconvex function which is neither convex nor differentiable nor locally Lipschitz continuous is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aragón-Artacho, F.J., Fleming, R.M.T., Vuong, P.T.: Accelerating the DC algorithm for smooth functions. Math. Program. 169, 95–118 (2018)

    Article  MathSciNet  Google Scholar 

  2. Arjevani, Y., Shalev-Shwartz, S., Shamir, O.: On lower and upper bounds in smooth and strongly convex optimization. J. Mach. Learn. Res. 17, 1–51 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  4. Aybat, N.S., Fallah, A., Gürbüzbalaban, M., Ozdaglar, A.: Robust accelerated gradient methods for smooth strongly convex functions. SIAM. J. Optim. 30, 717–751 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operators Theory in Hilbert Spaces. CMS Books in Mathematics, 2nd edn. Springer, Berlin (2017)

  6. Beck, A.: First Order Methods in Optimization. Series on Optimization. SIAM, Philadelphia (2017)

    Book  Google Scholar 

  7. Brito, A.S., Neto, JX Da Cruz., Lopes, J.O., Oliveira, P.R.: Interior proximal algorithm for quasiconvex programming problems and variational inequalities with linear constraints. J. Optim. Theory Appl. 154, 217–234 (2012)

  8. Cambini, R., Carosi, L.: Coercivity concepts and recession function in constrained problems. Int. J. Math. Sci. 2, 83–96 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Combettes, P.L., Pennanen, T.: Proximal methods for cohypomonotone operators. SIAM J. Control Optim. 43, 731–742 (2004)

    Article  MathSciNet  Google Scholar 

  10. Crouzeix, J.P.: A review of continuity and differentiability properties of quasiconvex functions on \(\mathbb{R}^{n}\). In: Aubin, J.P., Vinter, R. (Eds.), Convex Analysis and Optimization. Research Notes in Mathematics, vol. 57, Pitman, pp. 18–34 (1982)

  11. Crouzeix, J.P., Ferland, J.A., Zălinescu, C.: \(\alpha \)-convex sets and strong quasiconvexity. Math. Oper. Res. 22, 998–1022 (1997)

    Article  MathSciNet  Google Scholar 

  12. Da Cruz Neto, J.X., Da Silva, G., Ferreira, O., Lopez, J.: A subgradient method for multiobjective optimization. Comp. Optim. Appl. 54, 461–472 (2013)

  13. Davis, D., Grimmer, B.: Proximally guided stochastic sbgradient method for nonsmooth, nonconvex problems. SIAM J. Optim. 29, 1908–1930 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization I: a generic algorithmic framework. SIAM. J. Optim. 22, 1469–1492 (2012)

    Article  MathSciNet  Google Scholar 

  15. Grad, S.-M., Lara, F.: An extension of proximal point algorithms beyond convexity. J. Glob.Optim. (2021). https://doi.org/10.1007/s10898-021-01081-4

    Article  Google Scholar 

  16. Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Program. 116, 221–258 (2009)

    Article  MathSciNet  Google Scholar 

  17. Hazan, E., Kale, S.: Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex optimization. J. Mach. Learn. Res. 15, 2489–2512 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Hiriart-Urruty, J.B.: Generalized Differentiability, Duality, and Optimization for Problems Dealing with Differences of Convex Functions, Lecture Notes in Econ. and Math. Syst., vol. 256, pp. 37–69. Springer

  19. Iusem, A., Pennanen, T., Svaiter, B.F.: Inexact variants of the proximal point algorithm without monotonicity. SIAM. J. Optim. 13, 1080–1097 (2003)

    Article  MathSciNet  Google Scholar 

  20. Jovanović, M.: On strong quasiconvex functions and boundedness of level sets. Optimization 20, 163–165 (1989)

    Article  MathSciNet  Google Scholar 

  21. Jovanović, M.: A note on strongly convex and quasiconvex functions. Math. Notes 60, 584–585 (1996)

    Article  MathSciNet  Google Scholar 

  22. Karamardian, S.: Strictly quasi-convex (concave) functions and duality in mathematical programming. J. Math. Anal. Appl. 20, 344–358 (1967)

    Article  MathSciNet  Google Scholar 

  23. Kiwiel, K.C.: Convergence and efficiency of subgradient methods for quasiconvex minimization. Math. Program. Ser. A 90, 1–25 (2001)

    Article  MathSciNet  Google Scholar 

  24. Langenberg, N., Tichatschke, R.: Interior proximal methods for quasiconvex optimization. J. Glob. Optim. 52, 641–661 (2012)

    Article  MathSciNet  Google Scholar 

  25. Lewis, A.S., Wright, S.J.: A proximal method for composite minimization. Math. Program. 158, 501–546 (2016)

    Article  MathSciNet  Google Scholar 

  26. Mangasarian, O.L.: Pseudo-convex functions. J. SIAM Control Ser. A 3, 281–290 (1965)

    MathSciNet  MATH  Google Scholar 

  27. Martinet, B.: Regularisation d’inequations variationelles par approximations successives. Rev. Francaise Inf. Rech. Oper. 154–159,(1970)

  28. Martinet, B.: Determination approchée d’un point fixe d’une application pseudo-contractante. C.R. Acad. Sci. Paris, 274, 163–165 (1972)

  29. Pan, S., Chen, J.-S.: Entropy-like proximal algorithms based on a second-order homogeneous distance function for quasi-convex programming. J. Glob. Optim. 39, 555–575 (2007)

    Article  MathSciNet  Google Scholar 

  30. Quiroz, E.A., Papa, R., L Mallma, O.P.R.: An inexact proximal method for quasiconvex minimization: Eur. J. Oper. Res. 246, 721–729 (2015)

  31. Papa Quiroz, E.A., Oliveira, P.R.: An extension of proximal methods for quasiconvex minimization on the nonnegative orthant. Eur. J. Oper. Res. 216, 26–32 (2012)

    Article  MathSciNet  Google Scholar 

  32. Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 170–191 (2002)

    Article  MathSciNet  Google Scholar 

  33. Poljak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math. 7, 72–75 (1966)

    MATH  Google Scholar 

  34. Rockafellar, R.T.: Monotone operators and proximal point algorithms. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  35. Vial, J.P.: Strong convexity of sets and functions. J. Math. Econ. 9, 187–205 (1982)

    Article  MathSciNet  Google Scholar 

  36. Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8, 231–259 (1983)

    Article  MathSciNet  Google Scholar 

  37. Vladimirov, A.A., Nesterov, Y.E., Chekanov, Y.N.: On uniformly quasiconvex functionals. Vestn Mosk. Un-ta. vyehisl. matem. i kiber. 4, 18–27 (1978)

    MathSciNet  MATH  Google Scholar 

  38. Wang, G., Lu, S., Tu, W., Zhang, L.: SAdam: A variant of Adam for strongly convex functions (2020). arXiv:1905.02957

Download references

Acknowledgements

This research was partially supported by Conicyt–Chile under project Fondecyt Iniciación 11180320 (Lara).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lara.

Additional information

Communicated by Fabián Flores-Bazán.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, F. On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms. J Optim Theory Appl 192, 891–911 (2022). https://doi.org/10.1007/s10957-021-01996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01996-8

Keywords

Navigation