[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Data-Driven Selection of Tessellation Models Describing Polycrystalline Microstructures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Tessellation models have proven to be useful for the geometric description of grain microstructures in polycrystalline materials. With the use of a suitable tessellation model, the complex morphology of grains can be represented by a small number of parameters assigned to each grain, which not only entails a significant reduction in complexity, but also facilitates the investigation of certain geometric features of the microstructure. However, for a given set of microstructural data, the choice of a particular geometric model is traditionally based on researcher intuition. The model should provide a sufficiently good approximation to the data, while keeping the number of parameters small. In this paper, we discuss general aspects of the process of model selection and suggest several criteria for selecting an appropriate candidate from a certain set of tessellation models. The choice of candidate represents a trade-off between accuracy and complexity of the model. Here, the selected model is used solely to approximate given data samples, but it also provides guidance for developing stochastic tessellation models and generating virtual microstructures. Model fitting is carried out by simulated annealing, applied in a consistent manner to twelve different tessellation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: B.N. Petrov and F. Csaki (eds.) Proceedings of the 2nd International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)

  2. Alpers, A., Brieden, A., Gritzmann, P., Lyckegaard, A., Poulsen, H.F.: Generalized balanced power diagrams for 3D representations of polycrystals. Philos. Mag. 95(9), 1016–1028 (2015)

    Article  ADS  Google Scholar 

  3. Altendorf, H., Latourte, F., Jeulin, D., Faessel, M., Saintoyant, L.: 3D reconstruction of a multiscale microstructure by anisotropic tessellation models. Image Anal. Stereol. 33(2), 121–130 (2014)

    Article  Google Scholar 

  4. Aurenhammer, F.: Power diagrams: Properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987)

    Article  MathSciNet  Google Scholar 

  5. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing, Singapore (2013)

    Book  Google Scholar 

  6. Cherkassky, V., Mulier, F.M.: Learning from Data: Concepts, Theory, and Methods, 2nd edn. Wiley-IEEE Press, Hoboken (2007)

    Book  Google Scholar 

  7. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. Wiley, Chichester (2013)

    Book  Google Scholar 

  8. Dake, J.M., Oddershede, J., Sørensen, H., Werz, T., Shatto, J.C., Uesegi, K., Schmidt, S., Krill III, C.E.: Direct observation of grain rotations during coarsening of a semisolid Al–Cu alloy. Proc. Natl Acad. Sci. U.S.A. 113, E5998–E6006 (2016)

    Article  Google Scholar 

  9. Gelfand, A., Diggle, P., Guttorp, P., Fuentes, M.: Handbook of Spatial Statistics. Chapman & Hall/CRC, London (2010)

    Book  Google Scholar 

  10. Groeber, M.A., Jackson, M.A.: DREAM.3D: A digital representation environment for the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3(1), 1–17 (2014)

    Article  Google Scholar 

  11. Jeulin, D.: Random tessellations and Boolean random functions. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 25–36. Springer, Berlin (2013)

    Chapter  Google Scholar 

  12. Lyckegaard, A., Lauridsen, E.M., Ludwig, W., Fonda, R.W., Poulsen, H.F.: On the use of Laguerre tessellations for representations of 3D grain structures. Adv. Eng. Mater. 13(3), 165–170 (2011)

    Article  Google Scholar 

  13. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, Chichester (2000)

    Book  Google Scholar 

  14. Scheike, T.H.: Anisotropic growth of Voronoi cells. Adv. Appl. Probab. 26(1), 43–53 (1994)

    Article  MathSciNet  Google Scholar 

  15. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  16. Spettl, A., Wimmer, R., Werz, T., Heinze, M., Odenbach, S., Krill III, C.E., Schmidt, V.: Stochastic 3D modeling of Ostwald ripening at ultra-high volume fractions of the coarsening phase. Model. Simul. Mater. Sci. Eng. 23(6), 065001 (2015)

    Article  ADS  Google Scholar 

  17. Spettl, A., Brereton, T., Duan, Q., Werz, T., Krill III, C., Kroese, D.P., Schmidt, V.: Fitting Laguerre tessellation approximations to tomographic image data. Philos. Mag. 96(2), 166–189 (2016)

    Article  ADS  Google Scholar 

  18. Šedivý, O., Brereton, T., Westhoff, D., Polívka, L., Beneš, V., Schmidt, V., Jäger, A.: 3D reconstruction of grains in polycrystalline materials using a tessellation model with curved grain boundaries. Philos. Mag. 96(18), 1926–1949 (2016)

    Article  ADS  Google Scholar 

  19. Šedivý, O., Dake, J., Krill III, C., Schmidt, V., Jäger, A.: Description of the 3D morphology of grain boundaries in aluminum alloys using tessellation models generated by ellipsoids. Image Anal. Stereol. 36, 5–13 (2017)

    Article  Google Scholar 

  20. Teferra, K., Graham-Brady, L.: Tessellation growth models for polycrystalline microstructures. Comput. Mater. Sci. 102, 57–67 (2015)

    Article  Google Scholar 

  21. Valiev, R.Z., Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51(7), 881–981 (2006)

    Article  Google Scholar 

  22. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  23. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000)

    Book  Google Scholar 

Download references

Acknowledgements

This research was funded by the German Science Foundation (DFG) and the Czech Science Foundation (GACR, Project Number 17-00393J). We are grateful to the Japan Synchrotron Radiation Research Institute for the allotment of beam time on beamline BL20XU of SPring-8 (Proposals 2012A1427 and 2013A1506), and we thank Dmitri Molodov of the Institute of Physical Metallurgy and Metal Physics, RWTH Aachen, for providing the Al–1 wt% Mg specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Westhoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šedivý, O., Westhoff, D., Kopeček, J. et al. Data-Driven Selection of Tessellation Models Describing Polycrystalline Microstructures. J Stat Phys 172, 1223–1246 (2018). https://doi.org/10.1007/s10955-018-2096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2096-8

Keywords

Mathematics Subject Classification

Navigation