[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Phase Diagrams of Majority Voter Probabilistic Cellular Automata

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a detailed numerical analysis of the phase diagrams for some majority voter probabilistic cellular automata and connect the results with theory, enabling us to prove many of the observed features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Grinstein, G.: Role of irreversibility in stabilizing complex and nonergodic behaviour in locally interacting discrete systems. Phys. Rev. Lett. 55, 657–660 (1985)

    Article  ADS  Google Scholar 

  2. Bricmont, J., Van Den Bosch, H.: Intermediate model between majority voter PCA and its mean field model. arXiv:1310.0960 (2013).

  3. Busic, A., Fates, N., Mairesse, J., Marcovici, I.: Density classification on infinite lattices and trees. Electron J. Probab. 18(51), 1–22 (2013)

    MathSciNet  Google Scholar 

  4. de Maere, A., Ponselet, L.: Exponential decay of correlations for strongly coupled Toom probabilistic cellular automata. J. Stat. Phys. 147(3), 634–652 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Dhooge, A., Govaerts, W., Kuznetsov, YuA: MATCONT: a Matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Diakonova, M., MacKay, R.S.: Mathematical examples of space-time phases. Int. J. Bifurc. Chaos 21, 2297–2304 (2011)

    Article  Google Scholar 

  7. Dobrushin, R.L.: Markov processes with a large number of locally interacting components: existence of a limit process and its ergodicity. Probl. Inf. Transm. 7, 149–164 (1971)

    Google Scholar 

  8. Fernandez, F., Toom, A.L.: Non-Gibbsianness of the invariant measures of non-reversible cellular automata with totally asymmetric noise. Asterisque 287, 71–87 (2003)

    MathSciNet  Google Scholar 

  9. Gielis, G., MacKay, R.S.: Coupled map lattices with phase transition. Nonlinearity 13(3), 867–888 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Gray, L.F.: Toom’s stability theorem in continuous time. In: Bramson, M., Durrett, R. (eds.) Progress in Probability: Perplexing Problems in Probability, vol. 44, pp. 331–353. Birkhäuser, Basel (1999)

    Chapter  Google Scholar 

  11. Lebowitz, J.L., Maes, C., Speer, E.R.: Statistical mechanics of probabilistic cellular automata. J. Stat. Phys. 59, 117–170 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Liggett, T.M.: Classics in Mathematics: Interacting particle systems. Springer-Verlag, Berlin (2005)

    Google Scholar 

  13. MacKay, R.S.: Robustness of markov processes on large networks. J. Differ. Eqn. Appl. 17, 1155–1167 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Maes, Ch., Shlosman, S.B.: Ergodicity of probabilistic cellular automata: a constructive criterion. Commun. Math. Phys. 135(2), 233–251 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Maes, Ch., Shlosman, S.B.: When is an interacting particle system ergodic? Commun. Math. Phys. 151(3), 447–466 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Makowiec, D.: Stationary states of Toom cellular automata in simulations. Phys. Rev. E 60(4), 3787 (1999)

    Article  ADS  Google Scholar 

  17. Mairesse, J., Marcovici, I.: Probabilistic cellular automata and random fields with i.i.d. directions. Ann. Inst. Henri Poincare B 50(2), 455–475 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Ponselet, L.: Phase transitions in probabilistic cellular automata. arXiv:1312.3612 (2013).

  19. Spirin, V., Krapivsky, P.L., Redner, S.: Freezing in Ising ferromagnets. Phys. Rev. E 65, 016119 (2002)

    Article  ADS  Google Scholar 

  20. Schonmann, R.H., Shlosman, S.B.: Wulff droplets and the metastable relaxation of kinetic Ising models. Commun. Math. Phys. 194(2), 389–462 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Stavskaya, O.N., Piatetski-Shapiro, I.I.: Uniform networks of spontaneously active elements (in Russian). Probl. Kibern. 20, 91–106 (1968)

    MATH  Google Scholar 

  22. Toom, A.L.: Unstable multicomponent systems. Probl. Inf. Transm. 12(3), 220–224 (1976)

    MathSciNet  Google Scholar 

  23. Toom, A.L.: Stable and attractive trajectories in multicomponent systems. In: Dobrushin, R.L., Sinai, YaG (eds.) Multicomponent Random Systems, pp. 549–575. Dekker, New York (1980)

    Google Scholar 

  24. Toom, A.L., Vasilyev, N.B., Stavskaya, O.N., Mityushin, L.G., Kurdyumov, G.L., Pirogov, S.A.: Discrete local Markov systems. In: Dobrushin, R.L., Kryukov, V.I., Toom, A.L. (eds.) tochastic Cellular Systems, Ergodicity, Memory and Morphogenesis, pp. 1–182. Manchester University Press, Manchester (1990)

    Google Scholar 

  25. Toom, A.L.: Cellular automata with errors: problems for students of probability. In: Snell, L. (ed.) Topics in contemporary probability and its applications, Probability and stochastics series. CRC Press, Boca Raton (1995)

    Google Scholar 

  26. Toom, A.L.: Contours, Convex Sets, and Cellular Automata. Course notes from the 23th Colloquium of Brazilian Mathematics. UFPE Department of Statistics, Recife (2004)

    Google Scholar 

  27. Vasilyev, N.B., Petrovskaya, M.B., Piatetski-Shapiro, I.I.: Simulation of voting with random errors (in Russian). Autom. i Telemekh 10, 103–107 (1969)

    Google Scholar 

Download references

Acknowledgments

The research of the authors has been funded by The Alfred P. Sloan Foundation, New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Słowiński.

Appendix: Connections Between Percolation Operators and Contact Process

Appendix: Connections Between Percolation Operators and Contact Process

An interesting model worth studying together with the case of \(p=0\) or \(q=0\) of the NEC PCA is the contact process. The contact process with transition rates \(\omega _r^x\) for the state \(x\) on site \(r\)

$$\begin{aligned} \omega _r^x = {\left\{ \begin{array}{ll} 1 \rightarrow 0, \text{ with } \text{ rate } 1,\\ 0 \rightarrow 1, \text{ with } \text{ rate } \lambda {\sum }_{s \in \eta _r}{x_s}, \end{array}\right. } \end{aligned}$$
(22)

defined as in [12], is a continuous-time analogue of the percolation operators. By analysing the transition rates of the contact process one can observe that the contact process can be considered as a percolation operator with noise rate depending on the neighbourhood. More specifically, the state of site \(r\) can change to 1 from 0 only if there is at least one site in state 1 in its neighbourhood; this is exactly as for the case of the maximum function and the percolation operators. For both processes the all 0 state is absorbing.

Furthermore, if we compare parameters of continuous-time “well-stirred” approximations of the Stavskaya operator and the contact process in dimension one with one neighbour (\(n=2\)), we see that the parameter of the Stavskaya operator is a compactified analogue of the parameter of the contact process equation.

$$\begin{aligned} \frac{d\theta _S}{dt}&=(1-p) \theta _S(1-\theta _S)-p \theta _S,\nonumber \\ \frac{d\theta _C}{dt}&=\lambda \theta _C(1-\theta _C)-\theta _C,\end{aligned}$$
(23)
$$\begin{aligned} p&=\dfrac{1}{\lambda +1},\nonumber \\ \lambda&=0 \rightarrow p=1,\nonumber \\ \lambda&=\infty \rightarrow p=0. \end{aligned}$$
(24)

Here \(\theta _S\) and \(\theta _C\) are the proportions of 1s in the state of the Stavskaya process and in the contact process, respectively. For a formal comparison of discrete and continuous time models see [10].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Słowiński, P., MacKay, R.S. Phase Diagrams of Majority Voter Probabilistic Cellular Automata. J Stat Phys 159, 43–61 (2015). https://doi.org/10.1007/s10955-014-1156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1156-y

Keywords

Navigation