[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Graphene-based four-port circulator with an elliptical resonator for THz applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We suggest a new graphene-based four-port circulator for THz applications that consists of two parallel graphene waveguides coupled to an elliptical graphene resonator between them. The graphene elements are deposited on a dielectric substrate. An external constant magnetic field is applied normal to the resonator. The frequency response of the circulator obtained from numerical simulations performed with COMSOL Multiphysics software is in good agreement with those obtained from the ad hoc temporal coupled-mode theory. The analysis shows that the bandwidth of the circulator is about 5.7% around the central frequency 5.03 THz with the applied constant magnetic field of 0.8 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Code availability

Not applicable.

References

  1. Wu, Y., Rosenbaum, F.J.: Wide-band operation of microstrip circulators. IEEE Trans. Microw. Theory Tech. 22(10), 849 (1974)

    Article  Google Scholar 

  2. Schloemann, E., Blight, R.E.: Broad-band stripline circulators based on YIG and Li-ferrite single crystals. IEEE Trans. Microw. Theory Tech. 34(12), 1394 (1986)

    Article  Google Scholar 

  3. Dmitriev, V., Portela, G., Martins, L.: Three-port circulators with low symmetry based on photonic crystals and magneto-optical resonators. Photon Netw. Commun. 31(1), 56 (2016)

    Article  Google Scholar 

  4. Wang, Q., Ouyang, Z., Zheng, Y., Lin, M., Zheng, G.: Broadband six-port circulator based on magneto-optical-rod ring in photonic crystal. Appl. Phys. B 121(3), 385 (2015)

    Article  Google Scholar 

  5. Wang, Z., Fan, S.: Magneto-optical defects in two-dimensional photonic crystals. Appl. Phys. B 81(2–3), 369 (2005)

    Article  Google Scholar 

  6. Śmigaj, W., Romero-Vivas, J., Gralak, B., Magdenko, L., Dagens, B., Vanwolleghem, M.: Magneto-optical circulator designed for operation in a uniform external magnetic field. Opt. Lett. 35(4), 568 (2010)

    Article  Google Scholar 

  7. Cheng, Y., Qiao, L., Zhu, D., Wang, Y., Zhao, Z.: Passive polarimetric imaging of millimeter and terahertz waves for personnel security screening. Opt. Lett. 46(6), 1233 (2021)

    Article  Google Scholar 

  8. Ou, H., Lu, F., Xu, Z., Lin, Y.S.: Terahertz Metamaterial with multiple resonances for biosensing application. Nanomaterials 10(6), 1038 (2020)

    Article  Google Scholar 

  9. Chen, Z., Ma, X., Zhang, B., Zhang, Y., Niu, Z., Kuang, N., Chen, W., Li, L., Li, S.: A survey on terahertz communications. China Commun. 16(2), 1 (2019)

    Article  Google Scholar 

  10. Hafez, H., Chai, X., Ibrahim, A., Mondal, S., Férachou, D., Ropagnol, X., Ozaki, T.: Intense terahertz radiation and their applications. J. Opt. 18(9), 093004 (2016)

    Article  Google Scholar 

  11. Pawar, A.Y., Sonawane, D.D., Erande, K.B., Derle, D.V.: Terahertz technology and its applications. Drug Invent. Today 5(2), 157 (2013)

    Article  Google Scholar 

  12. Son, J.H., Oh, S.J., Cheon, H.: Potential clinical applications of terahertz radiation. J. Appl. Phys. 125(19), 190901 (2019)

    Article  Google Scholar 

  13. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.: Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611 (2010)

    Article  Google Scholar 

  14. Ferrari, A.C., Bonaccorso, F., Fal’Ko, V., Novoselov, K.S., Roche, S., Bøggild, P., Borini, S., Koppens, F.H., Palermo, V., Pugno, N., et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598 (2015)

  15. Avouris, P., Freitag, M.: Graphene photonics, plasmonics, and optoelectronics. IEEE J. Sel. Top. Quantum Electron. 20(1), 72 (2013)

    Article  Google Scholar 

  16. Meng, Y., Ye, S., Shen, Y., Xiao, Q., Fu, X., Lu, R., Liu, Y., Gong, M.: Waveguide engineering of graphene optoelectronics-modulators and polarizers. IEEE Photon. J. 10(1), 1 (2018)

    Article  Google Scholar 

  17. Crassee, I., Levallois, J., Walter, A.L., Ostler, M., Bostwick, A., Rotenberg, E., Seyller, T., Van Der Marel, D., Kuzmenko, A.B.: Giant Faraday rotation in single-and multilayer graphene. Nat. Phys. 7(1), 48 (2011)

    Article  Google Scholar 

  18. Sounas, D., Skulason, H., Nguyen, H., Guermoune, A., Siaj, M., Szkopek, T., Caloz, C.: Faraday rotation in magnetically biased graphene at microwave frequencies. Appl. Phys. Lett. 102(19), 191901 (2013)

    Article  Google Scholar 

  19. Sheng, S., Li, K., Kong, F., Zhuang, H.: Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator. Optics Commun. 336, 189 (2015)

    Article  Google Scholar 

  20. Dmitriev, V., de Nascimento, C.M.: Planar THz electromagnetic graphene pass-band filter with low polarization and angle of incidence dependencies. Appl. Opt. 54(6), 1515 (2015)

    Article  Google Scholar 

  21. Fallahi, A., Perruisseau-Carrier, J.: Manipulation of giant Faraday rotation in graphene metasurfaces. Appl. Phys. Lett. 101(23), 231605 (2012)

    Article  Google Scholar 

  22. Tamagnone, M., Moldovan, C., Poumirol, J.M., Kuzmenko, A.B., Ionescu, A.M., Mosig, J.R., Perruisseau-Carrier, J.: Near optimal graphene terahertz non-reciprocal isolator. Nat. Commun. 7(1), 1 (2016)

    Article  Google Scholar 

  23. Nikkhah, V., Bakhtafrouz, A., Maddahali, M., Dezaki, S.K.: Three-port graphene-based electromagnetic circulator in the terahertz and infrared frequency ranges with a very low loss and wideband response. JOSA B 35(8), 1754 (2018)

    Article  Google Scholar 

  24. Dmitriev, V., da Silva, S.L.M., Castro, W.: Ultrawideband graphene three-port circulator for THz region. Opt. Express 27(11), 15982 (2019)

    Article  Google Scholar 

  25. Dolatabady, A., Granpayeh, N.: Graphene based far-nnfrared junction circulator. IEEE Trans. Nanotechnol. 18, 200 (2019)

    Article  Google Scholar 

  26. Dmitriev, V., Castro, W., Melo, G., Oliveira, C.: Controllable graphene W-shaped three-port THz circulator. Photon. Nanostruct. Fundam. Appl. 100795 (2020)

  27. Lin, X., Xu, Y., Zhang, B., Hao, R., Chen, H., Li, E.: Unidirectional surface plasmons in nonreciprocal graphene. New J. Phys. 15(11), 113003 (2013)

    Article  Google Scholar 

  28. Doust, S.K., Siahpoush, V., Asgari, A.: The tunability of surface plasmon polaritons in graphene waveguide structures. Plasmonics 12(5), 1633 (2017)

    Article  Google Scholar 

  29. Xiao, S., Zhu, X., Li, B.H., Mortensen, N.A.: Graphene-plasmon polaritons: from fundamental properties to potential applications. Front. Phys. 11(2), 117801 (2016)

    Article  Google Scholar 

  30. Liu, Y.Q., Liu, P.K.: Excitation of surface plasmon polaritons by electron beam with graphene ribbon arrays. J. Appl. Phys. 121(11), 113104 (2017)

    Article  Google Scholar 

  31. Suh, W., Wang, Z., Fan, S.: Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40(10), 1511 (2004)

    Article  Google Scholar 

  32. Dmitriev, V., Portela, G., Martins, L.: Temporal coupled-mode theory of electromagnetic components described by magnetic groups of symmetry. IEEE Trans. Microw. Theory Tech. 66(3), 1165 (2017)

    Article  Google Scholar 

  33. Haus, H.A., Huang, W.: Coupled-mode theory. Proc. IEEE 79(10), 1505 (1991)

    Article  Google Scholar 

  34. Dmitriev, V., Castro, W.: Dynamically controllable terahertz graphene Y-circulator. IEEE Trans. Magn. 55(2), 1 (2018)

    Article  Google Scholar 

  35. Deng, L., Wu, Y., Zhang, C., Hong, W., Peng, B., Zhu, J., Li, S.: Manipulating of different-polarized reflected waves with graphene-based plasmonic metasurfaces in terahertz regime. Sci. Rep. 7(1), 1 (2017)

    Article  Google Scholar 

  36. Bludov, Y.V., Ferreira, A., Peres, N.M., Vasilevskiy, M.I.: A primer on surface plasmon-polaritons in graphene. Int. J. Mod. Phys. B 27(10), 1341001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lin, H., Pantoja, M.F., Angulo, L.D., Alvarez, J., Martin, R.G., Garcia, S.G.: FDTD modeling of graphene devices using complex conjugate dispersion material model. IEEE Microwave Wirel. Compon. Lett. 22(12), 612 (2012)

    Article  Google Scholar 

  38. Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332(6035), 1291 (2011)

    Article  Google Scholar 

  39. Wang, B., Zhang, X., Yuan, X., Teng, J.: Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100(13), 131111 (2012)

    Article  Google Scholar 

  40. Wang, Z., Fan, S.: Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator. Photon. Nanostruct. Fundam. Appl. 4(3), 132 (2006)

    Article  Google Scholar 

  41. Manolatou, C., Khan, M., Fan, S., Villeneuve, P.R., Haus, H., Joannopoulos, J.: Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron. 35(9), 1322 (1999)

    Article  Google Scholar 

  42. Barybin, A., Dmitriev, V.: Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics Application to Guided-Wave Optics. Rinton Press, Princeton (2002)

    MATH  Google Scholar 

  43. Oliveira, T., Dmitriev, V., Castro, W., Nobre, F., Silva, M.L. da., Barros, G.: Graphene-based four-port THz circulator. In: 2018 SBFoton International Optics and Photonics Conference (SBFoton IOPC), pp. 1–4. IEEE (2018)

  44. Hirayama, Y., Takahashi, Y., Hirosawa, S., Hono, K.: Intrinsic hard magnetic properties of Sm (Fe1-xCox) 12 compound with the ThMn12 structure. Scripta Mater. 138, 62 (2017)

    Article  Google Scholar 

  45. Gonçalves, P.A.D., Peres, N.M.: An introduction to graphene plasmonics. World Scientific (2016)

Download references

Funding

This work was supported by the Brazilian agencies National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Portela.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Calculation of the resonator radius

The power transfer through the circulator is possible because of the excitation of surface plasmon-polaritons (SPPs) in the graphene layer [45]. By considering some assumptions, such as the graphene layer with infinite size, one can determine the following formula for the calculation of the propagation constant \(\beta _{spp}\):

$$\begin{aligned} \beta _{spp}=\dfrac{(1+\varepsilon _1)(\omega \hbar )^2}{4\alpha E_{\rm F}\hbar c}\biggl (1-\dfrac{\omega _{c}^2}{\omega ^2}\biggr ), \end{aligned}$$
(8)

where \(\alpha \approx 0.01\) is the fine-structure constant and \(\varepsilon _1\) is the dielectric constant of the substrate.

The wavelength \(\lambda _{spp}\) of the SPP mode can be obtained by the expression \(\lambda _{spp}=2\pi /\beta _{spp}\), while the resonator radius R for the dipole TM mode can be calculated by the expression \(2\pi R=\lambda _{spp}\). Therefore, the following formula for the calculation of R can be derived:

$$\begin{aligned} R=\frac{1}{\beta _{spp}}. \end{aligned}$$
(9)

For the considered operating frequency range and material parameters, the estimated resonator radius obtained from Eqs. (8) and (9) is 600 nm. Since we have adopted an elliptical shape instead of a circular one for the resonator, we have used this value as an initial guess for the semi-major axis of the disk resonator (a). As one can see, the initial guess is close to the optimum value of a (618 nm).

Appendix B: Temporal coupled-mode theory based model

The circulator can be analytically modeled by using a TCMT-based approach. The general TCMT equations that describe the variation of the energy stored in the resonator and the power flow in the waveguides are [31]:

$$\begin{aligned}&\frac{d\mathbf{a}}{dt}=(j\Omega -\Gamma )\mathbf{{a}} + K^t|s_{\rm in}\rangle , \end{aligned}$$
(10)
$$\begin{aligned}&|s_{\rm out}\rangle =C|s_{\rm in}\rangle +D\mathbf{{a}}. \end{aligned}$$
(11)

In Eqs. (10) and (11), a is the matrix that represents the magnitude of the resonant modes, while the matrices \(|s_{\rm in}\rangle\) and \(|s_{\rm out}\rangle\) describe the incoming and outgoing waves, respectively. The square matrices \(\Omega\) and \(\Gamma\) represent the resonant frequencies and the decay rate of modes, respectively. These matrices are defined as:

$$\begin{aligned}&\mathbf{a}= \left( \! \begin{array} {l} a_+ \\ a_- \end{array} \!\!\right) , \end{aligned}$$
(12)
$$\begin{aligned}&|s_{\rm in}\rangle = \left( \! \begin{array} {l} s_{1+} \\ s_{2+} \\ s_{3+} \\ s_{4+} \end{array} \!\!\right) , \end{aligned}$$
(13)
$$\begin{aligned}&|s_{\rm out}\rangle = \left( \! \begin{array} {l} s_{1-} \\ s_{2-} \\ s_{3-} \\ s_{4-} \end{array} \!\!\right) , \end{aligned}$$
(14)
$$\begin{aligned}&\Omega = \left( \! \begin{array} {ll} \omega _+ &{} 0 \\ 0 &{} \omega _- \end{array} \!\!\right) , \end{aligned}$$
(15)
$$\begin{aligned}&\Gamma =\Gamma _{\rm port}+\Gamma _{i}= \left( \! \begin{array} {ll} 2\gamma _+&{} 0 \\ 0 &{} 2\gamma _- \end{array} \!\!\right) + \left( \! \begin{array} {ll} 2\gamma _{i+} &{} 0 \\ 0 &{} 2\gamma _{i-} \end{array} \!\!\right) , \end{aligned}$$
(16)

where the matrices \(\Gamma _{\rm port}\) and \(\Gamma _{i}\) define the decay rates of the counter-rotating modes related to waveguide coupling and intrinsic losses, respectively, and the parameter \(s_{m+}\) (\(s_{m-}\)) represents the field amplitude of the incoming (outgoing) wave at the mth port.

Matrices K and D describe the coupling of the input power to the resonator and the decay rate of the resonant mode energy to the output ports, respectively, while matrix C represents the direct coupling that takes place between the input ports and the output ones. They are defined below [31]:

$$\begin{aligned}&K=-\sqrt{2} \left( \! \begin{array} {ll} \sqrt{\gamma _+}e^{-j\left( \frac{\varphi +\pi }{2}\right) } &{} \quad 0 \\ 0 &{} \quad -\sqrt{\gamma _-}\\ \sqrt{\gamma _+}e^{-j\left( \frac{\varphi -\pi }{2}\right) } &{} \quad 0 \\ 0 &{} \quad \sqrt{\gamma _-} \end{array} \!\!\right) , \end{aligned}$$
(17)
$$\begin{aligned}&D=\sqrt{2} \left( \! \begin{array} {ll} 0 &{} \quad \sqrt{\gamma _-} \\ \sqrt{\gamma _+}e^{j\left( \frac{\varphi -\pi }{2}\right) } &{} \quad 0 \\ 0 &{} \quad -\sqrt{\gamma _-} \\ \sqrt{\gamma _+}e^{j\left( \frac{\varphi +\pi }{2}\right) } &{} \quad 0 \end{array} \!\!\right) , \end{aligned}$$
(18)
$$\begin{aligned}&C= \left( \! \begin{array} {cccc} 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 \\ 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 \\ 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 \\ 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 \end{array} \!\!\right) . \end{aligned}$$
(19)

From Eqs. (10)–(19), the following formulas for the transmission T and reflection R coefficients can be derived:

$$\begin{aligned}&T_{1\rightarrow 2}(\omega )=\left| \frac{s_{2-}}{s_{1+}}\right| ^2=\left| \frac{2\gamma _+}{j(\omega -\omega _+)+2\gamma _+ + 2\gamma _{i+}}\right| ^2, \end{aligned}$$
(20)
$$\begin{aligned}&T_{1\rightarrow 4}(\omega )=\left| \frac{s_{4-}}{s_{1+}}\right| ^2=\left| 1-\frac{2\gamma _+}{j(\omega -\omega _+)+2\gamma _+ + 2\gamma _{i+}}\right| ^2, \end{aligned}$$
(21)
$$\begin{aligned}&T_{2\rightarrow 1}(\omega )=\left| \frac{s_{1-}}{s_{2+}}\right| ^2=\left| \frac{2\gamma _-}{j(\omega -\omega _-)+2\gamma _- + 2\gamma _{i-}}\right| ^2, \end{aligned}$$
(22)
$$\begin{aligned}&T_{2\rightarrow 3}(\omega )=\left| \frac{s_{3-}}{s_{2+}}\right| ^2=\left| 1-\frac{2\gamma _-}{j(\omega -\omega _-)+2\gamma _- + 2\gamma _{i-}}\right| ^2, \end{aligned}$$
(23)
$$\begin{aligned}&T_{1\rightarrow 3}(\omega )=T_{2\rightarrow 4}(\omega )=R_{1}(\omega )=R_{2}(\omega )=0. \end{aligned}$$
(24)

In the ideal case (\(T_{1\rightarrow 2}(\omega _+) = 1\) and \(T_{2\rightarrow 1}(\omega _+) = 0\)), the condition \(\gamma _{i+}=0\) must be satisfied. However, this condition cannot be satisfied by real circulators, since it implies that the resonator should be lossless (no intrinsic losses). In practice, it is sufficient to ensure that \(\gamma _+ \gg \gamma _{i+}\) for the proper operation of the circulator.

Assuming that this condition is also met by the clockwise rotating mode, that is, \(\gamma _- \gg \gamma _{i-}\), one can directly derive the condition \(|\omega _+ - \omega _-|^2 \gg 0\), that is, the frequency splitting between the two counter-rotating resonant modes must be high enough in order to ensure the adequate functioning of the device.

In addition, for the case wherein the excitation is connected to port 1, one can derive, from Eqs. (20) and (21), the following formulas for the operating bandwidth of the circulator:

$$\begin{aligned}&\Delta \omega _{o} = 4\sqrt{\left( 10^{-0.1n_o}\right) \gamma _+^2-\left( \gamma _+ + \gamma _{i+}\right) ^2}, \end{aligned}$$
(25)
$$\begin{aligned}&\Delta \omega _{i} = 4\sqrt{\frac{\left( 10^{0.1n_i}\right) \left( \gamma _+ + \gamma _{i+}\right) ^2-\gamma _{i+}^2}{1-10^{0.1n_i}}}, \end{aligned}$$
(26)

where \(\Delta \omega _{o}\) is the bandwidth measured in the output port and \(\Delta \omega _{i}\) is the bandwidth measured in the isolated port. The parameters \(n_o\) and \(n_i\) are the reference levels (in dB) considered for the calculation of \(\Delta \omega _{o}\) and \(\Delta \omega _{i}\), respectively.

The results given in Sect. 4.2 are derived from the TCMT Eqs. (20)–(26) and refer to the following set of parameters: \(\omega _{ + } = 3.1604 \times 10^{{13}}\;{\text{rad}}\;{\text{s}}^{{ - 1}}\), \(\omega _{ - } = 3.8327 \times 10^{{13}}\;{\text{rad}}\;{\text{s}}^{{ - 1}}\), \(\gamma _{ + } = \gamma _{ - } = 10 \times 10^{{11}} \;{\text{rad}}\;{\text{s}}^{{ - 1}}\), and \(\gamma _{{i + }} = \gamma _{{i - }} = 2.5 \times 10^{{11}} \;{\text{rad}}\;{\text{s}}^{{ - 1}}\).

Appendix 3: Calculation of the total decay rate of the counter-rotating modes

The quality factor of the \(a_+\) mode (\(Q_+\)) can be calculated from the \(S_{21}\) curve obtained from COMSOL Multiphysics by using the formula

$$\begin{aligned} Q_+=\frac{f_0}{\Delta f} \end{aligned}$$
(27)

where \(f_0\) is the resonant frequency and \(\Delta f\) is the -3 dB resonance width (or, equivalently, the full width at half maximum—FWHM).

The parameter \(Q_+\) can also be described in terms of the total decay rate of the \(a_+\) mode. Assuming the decay rate matrix \(\Gamma\) given in Eq. (16), the quality factor is defined as follows:

$$\begin{aligned} Q_+=\frac{\omega _0}{2\times 2\gamma _{t+}}, \end{aligned}$$
(28)

where \(2\gamma _{t+}\) is the total decay rate of the mode.

By combining Eqs. (27) and (28), it is possible to obtain the following formula for the calculation of \(\gamma _{t+}\):

$$\begin{aligned} \gamma _{t+}=\frac{\pi \Delta f}{2}. \end{aligned}$$
(29)

From Fig. 11, one can obtain \(\Delta f \approx 880\) GHz. Therefore, \(\gamma _{{t + }} \approx 13.823 \times 10^{{11}} \;{\text{rad}}\;{\text{s}}^{{ - 1}}\). This value is very close to the sum of the considered values for \(\gamma _{+}\) (\(10 \times 10^{{11}} \;{\text{rad}}\;{\text{s}}^{{ - 1}}\)) and \(\gamma _{i+}\) (\(2.5 \times 10^{{11}} \;{\text{rad}}\;{\text{s}}^{{ - 1}}\)). Since the field profile of the counter-rotating modes \(a_+\) and \(a_-\) is the same except for the rotation direction and the resonance curves of the modes are similar, one can assume that the total decay rates of the modes are approximately equal (\(\gamma _{t+}\approx \gamma _{t-}\)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portela, G., Dmitriev, V., Oliveira, T. et al. Graphene-based four-port circulator with an elliptical resonator for THz applications. J Comput Electron 20, 2471–2482 (2021). https://doi.org/10.1007/s10825-021-01790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01790-9

Keywords

Navigation