[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Completely regular clique graphs, II

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Let \(\varGamma = (X,R)\) be a connected graph. Then \(\varGamma \) is said to be a completely regular clique graph of parameters (sc) with \(s\ge 1\) and \(c\ge 1\), if there is a collection \({\mathcal {C}}\) of completely regular cliques of size \(s+1\) such that every edge is contained in exactly c members of \({\mathcal {C}}\). In the previous paper (Suzuki in J Algebr Combin 40:233–244, 2014), we showed, among other things, that a completely regular clique graph is distance-regular if and only if it is a bipartite half of a certain distance-semiregular graph. In this paper, we show that a completely regular clique graph with respect to \({\mathcal {C}}\) is distance-regular if and only if every \({\mathcal {T}}(C)\)-module of endpoint zero is thin for all \(C\in {\mathcal {C}}\). We also discuss the relation between a \({\mathcal {T}}(C)\)-module of endpoint 0 and a \({\mathcal {T}}(x)\)-module of endpoint 1 and study examples of completely regular clique graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It will be shown that each member of \({\mathcal {C}}\) is a maximal clique if \(d(\varGamma ) >1\). See a remark preceding Lemma 5.

  2. This condition is not stated in [12]. If we do not have this condition, we need to allow \({\mathcal {C}}\) to be a multi-set. We do not need this condition if \(c_2^Y\) exists and \(d^Y\ge 3\).

  3. This class can be seen as a special case of C.

References

  1. Bang, S., Hiraki, A., Koolen, J.H.: Delsarte clique graphs. Eur. J. Combin. 28, 501–516 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bang, S., Hiraki, A., Koolen, J.H.: Delsarte set graphs with small \(c_2\). Graphs Combin. 26, 147–162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bang, S., Koolen, J.H.: On distance-regular graphs with smallest eigenvalue at least \(-m\). J. Combin. Theory Ser. B 100, 573–584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bannai, E., Ito, T.: Algebraic Combinatorics I. Benjamin-Cummings, California (1984)

    MATH  Google Scholar 

  5. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin, Heidelberg (1989)

    Book  MATH  Google Scholar 

  6. Cámara, M., Dalfó, C., Delorme, C., Fiol, M.A., Suzuki, H.: Edge-distance-regular graphs are distance-regular. J. Combin. Theory Ser. A 120, 1057–1067 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delorme, C.: Distance biregular bipartite graphs. Eur. J. Combin. 15, 223–238 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fiol, M.A.: Pseudo-distance-regularized graphs are distance-regular or distance biregular. Linear Algebra Appl. 437, 2973–2977 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Godsil, C.D., Shawe-Taylor, J.: Distance-regularised graphs are distance-regular or distance-biregular. J. Combin. Theory Ser. B 43, 14–24 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leonard, D.A.: Parameters of association schemes that are both \(P\)- and \(Q\)-polynomial. J. Combin. Theory Ser. A 36, 355–363 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Neumaier, A.: Completely regular codes. Discrete Math. 106(107), 353–360 (1992)

    Article  MathSciNet  Google Scholar 

  12. Suzuki, H.: Completely regular clique graphs. J. Algebr. Combin. 40, 233–244 (2014)

    Article  MATH  Google Scholar 

  13. Suzuki, H.: The geometric girth of a distance-regular graph having certain thin irreducible modules for the Terwilliger algebra. Eur. J. Combin. 27, 235–254 (2006)

    Article  MATH  Google Scholar 

  14. Suzuki, H.: The Terwilliger algebra associated with a set of vertices in a distance-regular graph. J. Algebr. Combin. 22, 5–38 (2005)

    Article  MATH  Google Scholar 

  15. Suzuki, H.: Distance-semiregular graphs. Algebra Colloq. 2, 315–328 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Terwilliger, P.: Algebraic graph theory. Hand-written note of a series of lectures given in 1993, rewritten and added comments by H. Suzuki. http://subsite.icu.ac.jp/people/hsuzuki/lecturenote/

  17. Terwilliger, P.: The subconstituent algebra of an association scheme, Part I. J. Algebr. Combin. 1, 363–388 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Terwilliger, P.: The subconstituent algebra of an association scheme, Part II. J. Algebr. Combin. 2, 73–103 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Terwilliger, P.: The subconstituent algebra of an association scheme, Part III. J. Algebr. Combin. 2, 177–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Terwilliger, P.: The subconstituent algebra of a distance-regular graph; thin modules with endpoint one. Linear Algebra Appl. 356, 157–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Grant-in-Aid for Scientific Research (No. 21540023), Japan Society of the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, H. Completely regular clique graphs, II. J Algebr Comb 43, 417–445 (2016). https://doi.org/10.1007/s10801-015-0639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-015-0639-5

Keywords

Navigation