Abstract
Tight convex and concave relaxations are of high importance in deterministic global optimization. We present a method to tighten relaxations obtained by the McCormick technique. We use the McCormick subgradient propagation (Mitsos et al. in SIAM J Optim 20(2):573–601, 2009) to construct simple affine under- and overestimators of each factor of the original factorable function. Then, we minimize and maximize these affine relaxations in order to obtain possibly improved range bounds for every factor resulting in possibly tighter final McCormick relaxations. We discuss the method and its limitations, in particular the lack of guarantee for improvement. Subsequently, we provide numerical results for benchmark cases found in the MINLPLib2 library and case studies presented in previous works, where the McCormick technique appears to be advantageous, and discuss computational efficiency. We see that the presented algorithm provides a significant improvement in tightness and decrease in computational time, especially in the case studies using the reduced space formulation presented in (Bongartz and Mitsos in J Glob Optim 69:761–796, 2017).
Similar content being viewed by others
References
Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)
Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex minlp. Optim. Method Softw. 24(4–5), 597–634 (2009)
Bendtsen, C., Staunin, O.: FADBAD++, A Flexible C++ Package for Automatic Differentiation. Version 2.1 (2012). http://www.fadbad.com. Accessed 18 Octob 2016
Bertsekas, D.P.: Convex Optimization Algorithms. Athena Scientific, Belmont (2015)
Bertsekas, D.P., Nedic, A., Ozdaglar, A.E., et al.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)
Bompadre, A., Mitsos, A., Chachuat, B.: Convergence analysis of Taylor models and McCormick–Taylor models. J. Glob. Optim. 57(1), 75–114 (2013)
Bongartz, D., Mitsos, A.: Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations. J. Glob. Optim. 69, 761–796 (2017)
Bongartz, D., Mitsos, A.: Deterministic global flowsheet optimization - between equation-oriented and sequential-modular. AIChE J 65, 1022–1034 (2019)
Bongartz, D., Najman, J., Sass, S., Mitsos, A.: MAiNGO: McCormick-based algorithm for mixed-integer nonlinear global optimization. In: Technical Report, Process Systems Engineering (AVT.SVT), RWTH Aachen University (2018). http://permalink.avt.rwth-aachen.de/?id=729717. Accessed 7 Jan 2019
Brearley, A.L., Mitra, G., Williams, H.P.: Analysis of mathematical programming problems prior to applying the simplex algorithm. Math. Program. 8(1), 54–83 (1975)
Chachuat, B., Houska, B., Paulen, R., Peri’c, N., Rajyaguru, J., Villanueva, M.E.: Set-theoretic approaches in analysis, estimation and control of nonlinear systems. IFAC PapersOnLine 48(8), 981–995 (2015)
Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In: Proceedings of VI SIBGRAPI (Brazilian Symposium on Computer Graphics and Image Processing), pp. 9–18. Citeseer (1993)
Cornelius, H., Lohner, R.: Computing the range of values of real functions with accuracy higher than second order. Computing 33(3–4), 331–347 (1984)
International Business Machines Corporation:: IBM ILOG CPLEX v12.8. Armonk (2009)
De Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37(1–4), 147–158 (2004)
Du, K., Kearfott, R.B.: The cluster problem in multivariate global optimization. J. Glob. Optim. 5(3), 253–265 (1994)
Gleixner, A.M., Berthold, T., Müller, B., Weltge, S.: Three enhancements for optimization-based bound tightening. J. Glob. Optim. 67(4), 731–757 (2017)
Gould, N., Scott, J.: A note on performance profiles for benchmarking software. ACM Trans. Math. Softw. 43(2), 15:1–15:5 (2016)
Hamed, A.S.E.D., McCormick, G.P.: Calculation of bounds on variables satisfying nonlinear inequality constraints. J. Glob. Optim. 3(1), 25–47 (1993)
Hansen, P., Jaumard, B., Lu, S.H.: An analytical approach to global optimization. Math. Program. 52(1), 227–254 (1991)
Johnson, S.: The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt. Accessed Feb 2018
Kannan, R., Barton, P.I.: The cluster problem in constrained global optimization. J. Glob. Optim. 69, 629–676 (2017)
Kannan, R., Barton, P.I.: Convergence-order analysis of branch-and-bound algorithms for constrained problems. J. Glob. Optim. 71, 753–813 (2017)
Kearfott, B., Du, K.: The Cluster Problem in Global Optimization: The Univariate Case, pp. 117–127. Springer, Vienna (1993)
Khan, K.A.: Subtangent-based approaches for dynamic set propagation. In: 57th IEEE Conference on Decision and Control (2018)
Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668 (2009)
Locatelli, M., Schoen, F.: Global optimization: theory, algorithms, and applications. In: SIAM, (2013)
Maranas, C.D., Floudas, C.A.: A global optimization approach for Lennard-Jones microclusters. J. Chem. Phys. 97(10), 7667–7678 (1992)
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I-convex underestimating problems. Math. Program. 10, 147–175 (1976)
McCormick, G.P.: Nonlinear Programming: Theory, Algorithms, and Applications. Wiley, New York (1983)
Misener, R., Floudas, C.: Antigone: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2014)
Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)
Moore, R.E., Bierbaum, F.: Methods and applications of interval analysis. In: SIAM Studies in Applied and Numerical Mathematics, Society for Industrial and Applied Mathematics (1979)
Morrison, D., Jacobson, S., Sauppe, J., Sewell, E.: Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning. Discret. Optim. 19, 79–102 (2016)
Najman, J., Bongartz, D., Tsoukalas, A., Mitsos, A.: Erratum to: multivariate McCormick relaxations. J. Glob. Optim. 68, 1–7 (2016)
Najman, J., Mitsos, A.: Convergence order of mccormick relaxations of LMTD function in heat exchanger networks. In: Kravanja, Z., Bogataj, M. (eds.) 26th European Symposium on Computer Aided Process Engineering, Computer Aided Chemical Engineering, vol. 38, pp. 1605–1610. Elsevier, Amsterdam (2016)
Najman, J., Mitsos, A.: On tightness and anchoring of McCormick and other relaxations. J. Glob. Optim. (2017). https://doi.org/10.1007/s10898-017-0598-6
Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization. 4OR 13(3), 247–277 (2015)
Puranik, Y., Sahinidis, N.V.: Bounds tightening based on optimality conditions for nonconvex box-constrained optimization. J. Glob. Optim. 67(1–2), 59–77 (2017)
Puranik, Y., Sahinidis, N.V.: Domain reduction techniques for global NLP and MINLP optimization. Constraints 22, 1–39 (2017)
Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Halsted Press Chichester, New York (1984)
Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)
Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8(2), 107–138 (1996)
Sahlodin, A., Chachuat, B.: Convex, concave relaxations of parametric odes using taylor models. Comput. Chem. Eng. 35(5), 844–857, : Selected Papers from ESCAPE-20 (European Symposium of Computer Aided Process Engineering-20), Ischia, Italy (2011)
Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. J. Glob. Optim. 33(4), 541–562 (2005)
Schweidtmann, A.M., Mitsos, A.: Global deterministic optimization with artificial neural networks embedded. J. Optim. Theory Appl. (2018)
Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51(4), 569–606 (2011)
Shectman, J.P., Sahinidis, N.V.: A finite algorithm for global minimization of separable concave programs. J. Glob. Optim. 12(1), 1–36 (1998)
Smith, E.M., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, 791–796 (1997)
Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer, New York (2002)
Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)
Tsoukalas, A., Mitsos, A.: Multivariate McCormick relaxations. J. Glob. Optim. 59, 633–662 (2014)
Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework. Optim. Method. Softw. 33(3), 563–593 (2018)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
Wechsung, A.: Global optimization in reduced space. In: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (2014)
Wechsung, A., Schaber, S.D., Barton, P.I.: The cluster problem revisited. J. Glob. Optim. 58(3), 429–438 (2014)
Wechsung, A., Scott, J.K., Watson, H.A.J., Barton, P.I.: Reverse propagation of McCormick relaxations. J. Glob. Optim. 63(1), 1–36 (2015)
Acknowledgements
We would like to thank Dr. Benoît Chachuat for providing MC++ v2.0 and Dominik Bongartz and Artur Schweidtmann for providing numerical case studies. We appreciate the thorough review and helpful comments provided by the anonymous reviewers and editors which resulted in an improved manuscript. This project has received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Improved McCormick Relaxations for the efficient Global Optimization in the Space of Degrees of Freedom MA 1188/34-1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Najman, J., Mitsos, A. Tighter McCormick relaxations through subgradient propagation. J Glob Optim 75, 565–593 (2019). https://doi.org/10.1007/s10898-019-00791-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-019-00791-0