[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Harsanyi power solution for games with restricted cooperation

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

This paper discusses the Harsanyi power solution for cooperative games in which cooperation among players is based on an arbitrary collection of feasible coalitions. We define the Harsanyi power solution as a value which distributes the Harsanyi dividends such that the dividend shares of players in each feasible coalition are proportional to the corresponding players’ participation index, (i.e., a power measure for players in the cooperation restrictions). When all coalitions can be formed in a game, the Harsanyi power solution coincides with the Shapley value. We provide two axiomatic characterizations for the Harsanyi power solution: one uses component efficiency and participation fairness, and the other uses efficiency and participation balanced contributions. Meanwhile, we show that the axioms of each axiomatization are logically independent. The study also shows that the Harsanyi power solution satisfies several other properties such as additivity and inessential player out. In addition, the Harsanyi power solution is the unique value that admits the \(\lambda \)-potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algaba E, Bilbao JM, Borm P et al (2001) The Myerson value for union stable structures. Math Meth Oper Res 54(3):359–371

    Article  MathSciNet  MATH  Google Scholar 

  • Algaba E, Bilbao JM, van den Brink R et al (2003) Axiomatizations of the Shapley value for cooperative games on antimatroids. Math Meth Oper Res 57(1):49–65

    Article  MathSciNet  MATH  Google Scholar 

  • Algaba E, Bilbao JM, van den Brink R (2015) Harsanyi power solutions for games on union stable systems. Ann Oper Res 225(1):27–44

    Article  MathSciNet  MATH  Google Scholar 

  • Bilbao JM, Edelman PH (2000) The Shapley value on convex geometries. Discret Appl Math 103(1):33–40

    Article  MathSciNet  MATH  Google Scholar 

  • Bilbao JM, Ordnez M (2009) Axiomatizations of the Shapley value for games on augmenting systems. Eur J Oper Res 196(3):1008–1014

    Article  MathSciNet  MATH  Google Scholar 

  • Calvo2015 Calvo E, Gutiérrez-López E (2015) The value in games with restricted cooperation. University of Valencia, ERI-CES

  • Derks J, Haller H, Peters H (2000) The selectope for cooperative games. Int J Game Theory 29(1):23–38

    Article  MathSciNet  MATH  Google Scholar 

  • Derks J, Peters H (1993) A Shapley value for games with restricted coalitions. Int J Game Theory 21(4):351–360

    Article  MathSciNet  MATH  Google Scholar 

  • Derks J, van der Laan G, Vasil’ev VA (2006) Characterizations of the random order values by Harsanyi payoff vectors. Math Meth Oper Res 64(1):155–163

    Article  MathSciNet  MATH  Google Scholar 

  • Derks J, van der Laan G, Vasil’ev VA (2010) On the Harsanyi payoff vectors and Harsanyi imputations. Theory Decis 68(3):301–310

    Article  MathSciNet  MATH  Google Scholar 

  • Faigle U, Kern W (1992) The Shapley value for cooperative games under precedence constraints. Int J Game Theory 21(3):249–266

    Article  MathSciNet  MATH  Google Scholar 

  • Gilles RP (2010) The cooperative game theory of networks and Hierarchies. Springer, New York

    Book  MATH  Google Scholar 

  • Gilles RP, Owen G, van den Brink R (1992) Games with permission structures: the conjunctive approach. Int J Game Theory 20(3):277–293

    Article  MathSciNet  MATH  Google Scholar 

  • Hammer PL, Peled UN, Sorensen S (1977) Pseudo-boolean functions and game theory. I. Core elements and Shapley value. Cah du CERO 19:159–176

    MathSciNet  MATH  Google Scholar 

  • Harsanyi JC (1959) A bargaining model for cooperative n-person games. In: Tucker AW, Luce RD (eds) Contributions to the theory of games IV. Princeton University Press, Princeton, pp 325–355

    MATH  Google Scholar 

  • Harsanyi JC (1963) A simplified bargaining model for the n-person cooperative game. Int Econ Rev 4(2):194–220

    Article  MATH  Google Scholar 

  • Hart S, Mas-Colell A (1989) Potential, value, and consistency. Econ. J Econ Soc 1989:589–614

    MATH  Google Scholar 

  • Hart S, Mas-Colell A (1988) The potential of the Shapley value. In: Roth AE (ed) The Shapley value: essays in honor of Lloyd S. Cambridge University Press, Cambridge, pp 127–137

    Chapter  Google Scholar 

  • Kalai K, Samet D (1987) On weighted Shapley values. Int J Game Theory 16(3):205–222

    Article  MathSciNet  MATH  Google Scholar 

  • Lange F, Grabisch M (2009) Values on regular games under Kirchhoff’s laws. Math Soc Sci 58(3):322–340

    Article  MathSciNet  MATH  Google Scholar 

  • Myerson RB (1977) Graphs and cooperation in games. Math Oper Res 2(3):225–229

    Article  MathSciNet  MATH  Google Scholar 

  • Myerson RB (1980) Conference structures and fair allocation rules. Int J Game Theory 9(3):169–182

    Article  MathSciNet  MATH  Google Scholar 

  • Nowak AS, Radzik T (1995) On axiomatizations of the weighted Shapley values. Games Econ Behav 8(2):389–405

    Article  MathSciNet  MATH  Google Scholar 

  • Routledge RR (2016) Information, egalitarianism and the value. Oper Res Lett 44(6):775–778

    Article  MathSciNet  Google Scholar 

  • Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games II, annals of mathematics studies. Princeton University Press, Princeton, pp 307–317

    Google Scholar 

  • van den Brink R (1997) An axiomatization of the disjunctive permission value for games with a permission structure. Int J Game Theory 26(1):27–43

    Article  MathSciNet  MATH  Google Scholar 

  • van den Brink R, Katsev I, Van der Laan G (2011) Axiomatizations of two types of Shapley values for games on union closed systems. Econ Theory 47(1):175–188

    Article  MathSciNet  MATH  Google Scholar 

  • van den Brink R, van der Laan G, Pruzhansky V (2011) Harsanyi power solutions for graph-restricted games. Int J Game Theory 40(1):87–110

    Article  MathSciNet  MATH  Google Scholar 

  • Vasil’ev VA (1978) Support function of the core of a convex game(in Russian). Optimizacija 21:30–35

    MATH  Google Scholar 

  • Vasil’ev VA (1982) On a class of operators in a space of regular set functions(in Russian). Optimizacija 28:102–111

    MATH  Google Scholar 

  • Vasil’ev VA (2003) Extreme points of the Weber polytope(in Russian). Diskretn Anali i Issled Oper 10(2):17–55

    MATH  Google Scholar 

  • Xu G, Sun H, Hoede C et al (2007) A solution defined by fine vectors. Department of Applied Mathematics, University of Twente

Download references

Acknowledgements

The authors would like to thank anonymous reviewers and editor for their extremely valuable comments. This work was supported by the National Natural Science Foundation of China (Nos.71371030, 71571192, 71271029, 71401003 and 71561022) and Natural Science Foundation of Beijing Municipality (No.9152002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxing Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Zhang, Q. Harsanyi power solution for games with restricted cooperation. J Comb Optim 35, 26–47 (2018). https://doi.org/10.1007/s10878-017-0152-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0152-y

Keywords

Mathematics Subject Classification

Navigation