Appendix 1: Accounting for Eqs. (3) and (4) from the formalism of Heavens
An electromagnetic analysis of Heavens [34] demonstrated that
$$\begin{aligned} R = \frac{\left( g_{1}^{2} + h_{1}^{2} \right) \exp \left( 2 \alpha _{1} \right) + \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + A \cos \left( 2 \gamma _{1} \right) + B \sin \left( 2 \gamma _{1} \right) }{\exp \left( 2 \alpha _{1} \right) + \left( g_{1}^{2} + h_{1}^{2} \right) \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + C \cos \left( 2 \gamma _{1} \right) + D \sin \left( 2 \gamma _{1} \right) }, \end{aligned}$$
(5)
and
$$\begin{aligned} T = \frac{n_{2}}{n_{0}} \ \frac{\{ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \}\{ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \}}{\exp \left( 2 \alpha _{1} \right) + \left( g_{1}^{2} + h_{1}^{2} \right) \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + C \cos \left( 2 \gamma _{1} \right) + D \sin \left( 2 \gamma _{1} \right) }, \end{aligned}$$
(6)
where the coefficients
$$\begin{aligned} A= & {} 2 \left( g_{1} g_{2} + h_{1} h_{2} \right) , \end{aligned}$$
(7)
$$\begin{aligned} B= & {} 2 \left( g_{1} h_{2} - g_{2} h_{1} \right) , \end{aligned}$$
(8)
$$\begin{aligned} C= & {} 2 \left( g_{1} g_{2} - h_{1} h_{2} \right) , \end{aligned}$$
(9)
and
$$\begin{aligned} D = 2 \left( g_{1} h_{2} + g_{2} h_{1} \right) , \end{aligned}$$
(10)
where
$$\begin{aligned} g_{1}= & {} \frac{ n_{0}^{2} - n_{1}^{2} - k_{1}^{2} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}}, \end{aligned}$$
(11)
$$\begin{aligned} h_{1}= & {} \frac{ 2 n_{0} k_{1} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}}, \end{aligned}$$
(12)
$$\begin{aligned} g_{2}= & {} \frac{ n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2}}{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}}, \end{aligned}$$
(13)
$$\begin{aligned} h_{2}= & {} \frac{ 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) }{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}}, \end{aligned}$$
(14)
$$\begin{aligned} \alpha _{1}= & {} \frac{2 \pi k_{1} d}{\lambda }, \end{aligned}$$
(15)
and
$$\begin{aligned} \gamma _{1} = \frac{2 \pi n_{1} d}{\lambda }, \end{aligned}$$
(16)
where we employ the same nomenclature as Heavens [34]. Through the direct substitution of Eqs. (5) and (6), it is seen that
$$\begin{aligned} \frac{1+R}{T} = \frac{1 + \frac{\left( g_{1}^{2} + h_{1}^{2} \right) \exp \left( 2 \alpha _{1} \right) + \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + A \cos \left( 2 \gamma _{1} \right) + B \sin \left( 2 \gamma _{1} \right) }{\exp \left( 2 \alpha _{1} \right) + \left( g_{1}^{2} + h_{1}^{2} \right) \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + C \cos \left( 2 \gamma _{1} \right) + D \sin \left( 2 \gamma _{1} \right) }}{\frac{n_{2}}{n_{0}} \ \frac{\{ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \}\{ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \}}{\exp \left( 2 \alpha _{1} \right) + \left( g_{1}^{2} + h_{1}^{2} \right) \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + C \cos \left( 2 \gamma _{1} \right) + D \sin \left( 2 \gamma _{1} \right) }}, \end{aligned}$$
(17)
which, noting the common denominator in the expressions for R and T, i.e., Eqs. (5) and (6), respectively, may in turn be expressed as follows:
$$\begin{aligned} \begin{aligned} \frac{1+R}{T}&= \frac{n_{0}}{n_{2}} \, \frac{1}{\left[ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \right] \left[ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \right] } \, \Biggl [ \biggl \{ \exp \left( 2 \alpha _{1} \right) + \left( g_{1}^{2} + h_{1}^{2} \right) \\&\qquad \qquad \times \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + C \cos \left( 2 \gamma _{1} \right) + D \sin \left( 2 \gamma _{1} \right) \biggr \} \\&\qquad + \biggl \{ \left( g_{1}^{2} + h_{1}^{2} \right) \exp \left( 2 \alpha _{1} \right) + \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + A \cos \left( 2 \gamma _{1} \right) \\& \quad \qquad+ B \sin \left( 2 \gamma _{1} \right) \biggr \} \Biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{\left[ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \right] \Bigl [ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \Bigr ]} \, \Biggl [ \Bigl ( 1 + \left( g_{1}^{2} + h_{1}^{2} \right) \Bigr ) \exp \left( 2 \alpha _{1} \right) \\&\qquad + \Bigl ( \left( g_{1}^{2} + h_{1}^{2} \right) \left( g_{2}^{2} + h_{2}^{2} \right) + \left( g_{2}^{2} + h_{2}^{2} \right) \Bigr ) \exp \left( - 2 \alpha _{1} \right) \\&\qquad + \left( A + C \right) \cos \left( 2 \gamma _{1} \right) + \left( B + D \right) \sin \left( 2 \gamma _{1} \right) \Biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{\left[ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \right] \left[ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \right] } \, \Biggl [ \Bigl ( 1 + \left( g_{1}^{2} + h_{1}^{2} \right) \Bigr ) \exp \left( 2 \alpha _{1} \right) \\&\qquad + \Bigl ( 1 + \left( g_{1}^{2} + h_{1}^{2} \right) \Bigr ) \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + \left( A + C \right) \cos \left( 2 \gamma _{1} \right) \\&\qquad + \left( B + D \right) \sin \left( 2 \gamma _{1} \right) \Biggr ] , \end{aligned} \end{aligned}$$
(18)
or ultimately
$$\begin{aligned} \frac{1+R}{T} = \frac{n_{0}}{n_{2}} \ \frac{ \left[ 1 + \left( g_{1}^{2} + h_{1}^{2} \right) \right] \left[ \exp \left( 2 \alpha _{1} \right) + \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) \right] + \left( A + C \right) \cos \left( 2 \gamma _{1} \right) + \left( B + D \right) \sin \left( 2 \gamma _{1} \right) }{\{ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \}\{ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \}}, \end{aligned}$$
(19)
where all terms are as previously defined. Through the direct substitution of Eqs. (5) and (6), it is also seen that
$$\begin{aligned} \frac{1-R}{T} = \frac{1 - \frac{\left( g_{1}^{2} + h_{1}^{2} \right) \exp \left( 2 \alpha _{1} \right) + \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + A \cos \left( 2 \gamma _{1} \right) + B \sin \left( 2 \gamma _{1} \right) }{\exp \left( 2 \alpha _{1} \right) + \left( g_{1}^{2} + h_{1}^{2} \right) \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + C \cos \left( 2 \gamma _{1} \right) + D \sin \left( 2 \gamma _{1} \right) }}{\frac{n_{2}}{n_{0}} \ \frac{\{ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \}\{ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \}}{\exp \left( 2 \alpha _{1} \right) + \left( g_{1}^{2} + h_{1}^{2} \right) \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + C \cos \left( 2 \gamma _{1} \right) + D \sin \left( 2 \gamma _{1} \right) }}, \end{aligned}$$
(20)
which, noting the common denominator in the expressions for R and T, i.e., Eqs. (5) and (6), respectively, may in turn be expressed as follows:
$$\begin{aligned} \begin{aligned} \frac{1- R}{T}&= \frac{n_{0}}{n_{2}} \, \frac{1}{\left[ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \right] \left[ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \right] } \, \biggl [ \Bigl \{ \exp \left( 2 \alpha _{1} \right) + \left( g_{1}^{2} + h_{1}^{2} \right) \\&\quad\qquad \times \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + C \cos \left( 2 \gamma _{1} \right) + D \sin \left( 2 \gamma _{1} \right) \Bigr \} \\&\qquad - \Bigl \{ \left( g_{1}^{2} + h_{1}^{2} \right) \exp \left( 2 \alpha _{1} \right) + \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) + A \cos \left( 2 \gamma _{1} \right) \\&\qquad \quad + B \sin \left( 2 \gamma _{1} \right) \Bigr \} \bigg ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{\left[ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \right] \left[ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \right] } \, \biggl [ \Bigl ( 1 - \left( g_{1}^{2} + h_{1}^{2} \right) \Bigr ) \exp \left( 2 \alpha _{1} \right) \\&\qquad + \Bigl ( \left( g_{1}^{2} + h_{1}^{2} \right) \left( g_{2}^{2} + h_{2}^{2} \right) - \left( g_{2}^{2} + h_{2}^{2} \right) \Bigr ) \exp \left( - 2 \alpha _{1} \right) \\&\qquad - \Bigl \{ \left( A - C \right) \cos \left( 2 \gamma _{1} \right) + \left( B - D \right) \sin \left( 2 \gamma _{1} \right) \Bigr \} \biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{\left[ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \right] \left[ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \right] } \, \biggl [ \Bigl ( 1 - \left( g_{1}^{2} + h_{1}^{2} \right) \Bigr ) \exp \left( 2 \alpha _{1} \right) \\&\qquad - \Bigl ( 1 - \left( g_{1}^{2} + h_{1}^{2} \right) \Bigr ) \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) \\&\qquad - \Bigl \{ \left( A - C \right) \cos \left( 2 \gamma _{1} \right) + \left( B - D \right) \sin \left( 2 \gamma _{1} \right) \Bigr \} \biggr ], \end{aligned} \end{aligned}$$
(21)
or ultimately
$$\begin{aligned} \frac{1-R}{T} = \frac{n_{0}}{n_{2}} \ \frac{ \left[ 1 - \left( g_{1}^{2} + h_{1}^{2} \right) \right] \left[ \exp \left( 2 \alpha _{1} \right) - \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) \right] - \left( A - C \right) \cos \left( 2 \gamma _{1} \right) - \left( B - D \right) \sin \left( 2 \gamma _{1} \right) }{\{ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \}\{ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \}}, \end{aligned}$$
(22)
where, as for Eq. (19), all terms are as previously defined.
In order to complete this analysis, we now develop the identities that are required the required for the simplification of Eqs. (19) and (22). In order to perform this analysis, we draw upon Eqs. (7), (8), (9), (10), (11), (12), (13), and (14). We start with expressions for \(1 - \left( g_{1}^{2} + h_{1}^{2} \right) \) and \(1 + \left( g_{1}^{2} + h_{1}^{2} \right) \). Through the use of Eqs. (11) and (12), it can be shown that
$$\begin{aligned} \begin{aligned} 1 - \left( g_{1}^{2} + h_{1}^{2} \right)&= 1 - \left\{ \left[ \frac{ n_{0}^{2} - n_{1}^{2} - k_{1}^{2} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \right] ^{2} + \left[ \frac{ 2 n_{0} k_{1} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \right] ^{2} \right\} , \\&= \frac{ \left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] ^{2} - \left[ \left( n_{0}^{2} - n_{1}^{2} - k_{1}^{2} \right) ^{2} + 4 \left( n_{0}k_{1} \right) ^{2} \right] }{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] ^{2}}, \\&= \frac{ \left[ \left( n_{0} + n_{1} \right) ^{4} + 2 \left( n_{0} + n_{1} \right) ^{2} k_{1}^{2} + k_{1}^{4} \right] - \left[ \left( n_{0}^{2} - n_{1}^{2} \right) ^{2} - 2 \left( n_{0}^{2} - n_{1}^{2} \right) k_{1}^{2} + k_{1}^{4} + 4 n_{0}^{2} k_{1}^{2} \right] }{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] ^{2}}, \\&= \frac{ \left[ n_{0}^{4} + 4 n_{0}^{3} n_{1} + 6 n_{0}^{2} n_{1}^{2} + 4 n_{0} n_{1}^{3} + n_{1}^{4} + 2 n_{0}^{2} k_{1}^{2} + 4 n_{0} n_{1} k_{1}^{2} + 2 n_{1}^{2} k_{1}^{2} + k_{1}^{4} \right] - \left[ n_{0}^{4} - 2 n_{0}^{2} n_{1}^{2} + n_{1}^{4} - 2 n_{0}^{2} k_{1}^{2} + 2 n_{1}^{2} k_{1}^{2} + k_{1}^{4} + 4 n_{0}^{2} k_{1}^{2} \right] }{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] ^{2}}, \\&= \frac{ \boxed {n_{0}^{4}} + 4 n_{0}^{3} n_{1} + \underline{6 n_{0}^{2} n_{1}^{2}} + 4 n_{0} n_{1}^{3} + \underbrace{n_{1}^{4}} + 2 n_{0}^{2} k_{1}^{2} + 4 n_{0} n_{1} k_{1}^{2} + 2 n_{1}^{2} k_{1}^{2} + k_{1}^{4} - \boxed {n_{0}^{4}} + \underline {2 n_{0}^{2} n_{1}^{2}} - \underbrace{n_{1}^{4}} + 2 n_{0}^{2} k_{1}^{2} - 2 n_{1}^{2} k_{1}^{2} - k_{1}^{4} - 4 n_{0}^{2} k_{1}^{2}}{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] ^{2}}, \\&= \frac{ 4 n_{0}n_{1} \left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] }{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] ^{2}}, \\&= \frac{ 4 n_{0}n_{1}}{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] }, \end{aligned} \end{aligned}$$
(23)
where similar terms are grouped using the symbols depicted in the above expressions, many such terms ultimately being eliminated; the symbols used are \(\boxed {\cdot }, \underline{\cdot }, \underbrace{\cdot }\), and \(\overbrace{\cdot }\). A straightforward analysis, stemming from Eq. (23), indicates that
$$\begin{aligned} g_{1}^{2} + h_{1}^{2} = 1 - \frac{4 n_{0}n_{1}}{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] }, \end{aligned}$$
(24)
and so it can be shown that
$$\begin{aligned} \begin{aligned} 1+ \left( g_{1}^{2} + h_{1}^{2} \right)&= 2 - \frac{4 n_{0}n_{1}}{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] }, \\&= \frac{2 \left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] - 4 n_{0} n_{1}}{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] }, \\&= \frac{2 \left( n_{0}^{2} + n_{1}^{2} + k_{1}^{2} \right) }{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] }. \end{aligned} \end{aligned}$$
(25)
Other identities may be acquired directly from this result. In particular, noting that
$$\begin{aligned} \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} = 1 + 2 g_{1} + g_{1}^{2} + h_{1}^{2} = \left[ 1 + \left( g_{1}^{2} + h_{1}^{2} \right) \right] + 2 g_{1}, \end{aligned}$$
(26)
and so, from Eqs. (11) and (25), it is seen that
$$\begin{aligned} \left( 1 + g_{1} \right) ^{2} + h_{1}^{2}&= \frac{2 \left( n_{0}^{2} + n_{1}^{2} + k_{1}^{2} \right) }{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] } + 2 \frac{ n_{0}^{2} - n_{1}^{2} - k_{1}^{2} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}}, \\&= \frac{2 n_{0}^{2} + \boxed {2 n_{1}^{2}} + \underbrace{2 k_{1}^{2}} + 2 n_{0}^{2} - \boxed {2 n_{1}^{2}} - \underbrace{2 k_{1}^{2}}}{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] }, \\&= \frac{4 n_{0}^{2}}{\left[ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} \right] }. \end{aligned}$$
(27)
In addition, from Eqs. (13) and (14), it can be seen that
$$\begin{aligned} \left( 1 + g_{2} \right) ^{2} + h_{2}^{2}&= \left[ 1 + \frac{ n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2}}{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] ^{2} + \left[ \frac{ 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) }{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] ^{2}, \\&= \left[ \frac{\left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} + n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2}}{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] ^{2} \\&\quad + \left[ \frac{ 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) }{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] ^{2}, \\&= \left[ \frac{n_{1}^{2} + 2 n_{1} n_{2} + \boxed {n_{2}^{2}} + k_{1}^{2} + 2 k_{1} k_{2} + \underbrace{k_{2}^{2}} + n_{1}^{2} - \boxed {n_{2}^{2}} + k_{1}^{2} - \underbrace{k_{2}^{2}}}{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] ^{2}\\&\quad + \left[ \frac{ 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) }{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] ^{2}, \\&= \frac{ \left[ 2 n_{1} \left( n_{1} + n_{2} \right) + 2 k_{1} \left( k_{1} + k_{2} \right) \right] ^{2} + \left[ 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) \right] ^{2}}{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] ^{2}}, \\&= 4 \ \frac{ n_{1}^{2} \left( n_{1} + n_{2} \right) ^{2} + 2 n_{1} k_{1} \left( n_{1} + n_{2} \right) \left( k_{1} + k_{2} \right) + k_{1}^{2} \left( k_{1} + k_{2} \right) ^{2} + n_{1}^{2} k_{2}^{2} - 2 n_{1} n_{2} k_{1} k_{2} + n_{2}^{2} k_{1}^{2}}{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] ^{2}}, \\&= 4 \ \frac{ n_{1}^{2} \left( n_{1}^{2} + 2 n_{1} n_{2} + n_{2}^{2} \right) + 2 n_{1} k_{1} \left( n_{1} + n_{2} \right) \left( k_{1} + k_{2} \right) + k_{1}^{2} \left( k_{1}^{2} + 2 k_{1} k_{2} + k_{2}^{2} \right) + n_{1}^{2} k_{2}^{2} - 2 n_{1} n_{2} k_{1} k_{2} + n_{2}^{2} k_{1}^{2}}{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] ^{2}}, \\&= 4 \ \frac{ n_{1}^{4} + 2 n_{1}^{3} n_{2} + n_{1}^{2} n_{2}^{2} + 2 n_{1} k_{1} \left( n_{1} k_{1} + n_{1} k_{2} + n_{2} k_{1} + n_{2} k_{2} \right) + k_{1}^{2} \left( k_{1}^{2} + 2 k_{1} k_{2} + k_{2}^{2} \right) + n_{1}^{2} k_{2}^{2} - 2 n_{1} n_{2} k_{1} k_{2} + n_{2}^{2} k_{1}^{2}}{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] ^{2}}, \\&= 4 \ \frac{ n_{1}^{4} + 2 n_{1}^{3} n_{2} + n_{1}^{2} n_{2}^{2} + 2 n_{1}^{2} k_{1}^{2} + 2 n_{1}^{2} k_{1} k_{2} + 2 n_{1} n_{2} k_{1}^{2} + \boxed {2 n_{1} n_{2} k_{1} k_{2}} + k_{1}^{4} + 2 k_{1}^{3} k_{2} + k_{1}^{2} k_{2}^{2} + n_{1}^{2} k_{2}^{2} - \boxed {2 n_{1} n_{2} k_{1} k_{2}} + n_{2}^{2} k_{1}^{2}}{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] ^{2}}, \\&= 4 \ \frac{ n_{1}^{2} \left[ n_{1}^{2} + 2 n_{1} n_{2} + n_{2}^{2} \right] + 2 n_{1}^{2} k_{1}^{2} + 2 n_{1}^{2} k_{1} k_{2} + 2 n_{1} n_{2} k_{1}^{2} +
k_{1}^{4} + 2 k_{1}^{3} k_{2} + k_{1}^{2} k_{2}^{2} + n_{1}^{2} k_{2}^{2} + n_{2}^{2} k_{1}^{2}}{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] ^{2}}, \\&= 4 \ \frac{ n_{1}^{2} \left[ n_{1}^{2} + 2 n_{1} n_{2} + n_{2}^{2} \right] + \underbrace{n_{1}^{2} k_{1}^{2}} + \boxed {n_{1}^{2} k_{1}^{2}} + \boxed {2 n_{1}^{2} k_{1} k_{2}} + \underbrace{2 n_{1} n_{2} k_{1}^{2}} + \overbrace{k_{1}^{4}} + \overbrace{2 k_{1}^{3} k_{2}} + \overbrace{k_{1}^{2} k_{2}^{2}} + \boxed {n_{1}^{2} k_{2}^{2}} + \underbrace{n_{2}^{2} k_{1}^{2}}}{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] ^{2}}, \\&= 4 \ \frac{ n_{1}^{2} \left[ n_{1}^{2} + 2 n_{1} n_{2} + n_{2}^{2} \right] + n_{1}^{2} \left[ k_{1}^{2} + 2 k_{1} k_{2} + k_{2}^{2} \right] + k_{1}^{2} \left[ n_{1}^{2} + 2 n_{1} n_{2} + n_{2}^{2} \right] + k_{1}^{2} \left[ k_{1}^{2} + 2 k_{1} k_{2} + k_{2}^{2} \right] }{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] ^{2}}, \\&= 4 \ \frac{ n_{1}^{2} \left[ \left( n_{1}+ n_{2} \right) ^{2} + \left( k_{1}+ k_{2} \right) ^{2} \right] + k_{1}^{2} \left[ \left( n_{1}+ n_{2} \right) ^{2} + \left( k_{1}+ k_{2} \right) ^{2} \right] }{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] ^{2}}, \\&= 4 \frac{n_{1}^{2} + k_{1}^{2}}{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] }. \end{aligned}$$
(28)
Noting that
$$\begin{aligned} \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} = 1 + 2 g_{2} + g_{2}^{2} + h_{2}^{2}, \end{aligned}$$
(29)
from Eqs. (13) and (28), we can see that
$$\begin{aligned} g_{2}^{2} + h_{2}^{2}&= 4 \frac{n_{1}^{2} + k_{1}^{2}}{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] } - 2 g_{2} - 1, \\&= 4 \frac{n_{1}^{2} + k_{1}^{2}}{\left[ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \right] } - 2 \left[ \frac{ n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2}}{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] - 1, \\&= \frac{\left[ 4 n_{1}^{2} + 4 k_{1}^{2} \right] - 2 n_{1}^{2} + 2 n_{2}^{2} - 2 k_{1}^{2} + 2 k_{2}^{2} - n_{1}^{2} - 2 n_{1} n_{2} - n_{2}^{2} - k_{1}^{2} - 2 k_{1} k_{2} - k_{2}^{2}}{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}}, \\&= \frac{\boxed {4 n_{1}^{2}} + \underbrace{4 k_{1}^{2}} - \boxed {2 n_{1}^{2}} + \overbrace{2 n_{2}^{2}} - \underbrace{2 k_{1}^{2}} + \underline{2 k_{2}^{2}} - \boxed {n_{1}^{2}} - 2 n_{1} n_{2} - \overbrace{n_{2}^{2}} - \underbrace{k_{1}^{2}} - 2 k_{1} k_{2} - \underline{k_{2}^{2}}}{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}}, \\&= \frac{ \left( n_{1} - n_{2} \right) ^{2} + \left( k_{1} - k_{2} \right) ^{2} }{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}}. \end{aligned}$$
(30)
Finally, from Eqs. (7) and (9), it can be seen that
$$\begin{aligned} A + C&= 4 g_{1} g_{2} \\&= 4 \ \frac{ n_{0}^{2} - n_{1}^{2} - k_{1}^{2} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \ \frac{ n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2}}{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}}, \end{aligned}$$
(31)
the final form of Eq. (31) drawing upon the use of Eqs. (11) and (13), a comparable analysis, from Eqs. (8) and (10), showing that
$$\begin{aligned}B + D&= 4 g_{1} h_{2} \\&= 4 \ \frac{ n_{0}^{2} - n_{1}^{2} - k_{1}^{2} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \ \frac{ 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) }{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}}, \end{aligned}$$
(32)
the final form of Eq. (32) drawing upon the use of Eqs. (11) and (14). Similarly, from Eqs. (7) and (9), it can be seen that
$$\begin{aligned} A - C&= 4 h_{1} h_{2} \\&= 4 \ \frac{ 2 n_{0} k_{1} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \ \frac{ 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) }{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}},\end{aligned}$$
(33)
the final form of Eq. (33) drawing upon the use of Eqs. (12) and (14), a comparable analysis, from Eqs. (8) and (10), showing that
$$\begin{aligned} B - D&= - 4 g_{2} h_{1} \\&= - 4 \ \frac{ n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2}}{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \ \frac{ 2 n_{0} k_{1} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}},\end{aligned}$$
(34)
The final form of Eq. (34) drawing upon the use of Eqs. (12) and (13). So all of the identities required for the evaluation of Eqs. (19) and (22) have been developed.
Recalling, from Eq. (19) that
$$\begin{aligned} \frac{1+R}{T} = \frac{n_{0}}{n_{2}} \ \frac{ \left[ 1 + \left( g_{1}^{2} + h_{1}^{2} \right) \right] \left[ \exp \left( 2 \alpha _{1} \right) + \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) \right] + \left( A + C \right) \cos \left( 2 \gamma _{1} \right) + \left( B + D \right) \sin \left( 2 \gamma _{1} \right) }{\{ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \}\{ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \}}, \end{aligned}$$
(35)
and so, from the identities in Eqs. (25), (27), (28), (30), (31), and (32), it can be shown that
$$\begin{aligned} \begin{aligned} \frac{1+R}{T}&= \frac{n_{0}}{n_{2}} \, \Biggl[\Biggl\{ \frac{2 \left( n_{0}^{2} + n_{1}^{2} + k_{1}^{2} \right) }{\left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \Biggr\} \biggl \{ \exp \left( 2 \alpha _{1} \right) + \frac{ \left( n_{1} - n_{2} \right) ^{2} + \left( k_{1} - k_{2} \right) ^{2} }{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \\&\qquad \times \exp \left( - 2 \alpha _{1} \right) \biggr \} + \left\{ 4 \left[ \frac{ n_{0}^{2} - n_{1}^{2} - k_{1}^{2} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \right] \left[ \frac{ n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2}}{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] \right\} \\&\qquad \times \cos \left( 2 \gamma _{1} \right) + \left\{ 4 \left[ \frac{ n_{0}^{2} - n_{1}^{2} - k_{1}^{2} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \right] \left[ \frac{ 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) }{ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] \right\} \\&\qquad \times \sin \left( 2 \gamma _{1} \right) \Biggr ] \Bigg / \Bigg [ \left\{ \frac{4 n_{0}^{2}}{\left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \right\} \left\{ 4 \left[ \frac{n_{1}^{2} + k_{1}^{2}}{\left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}}\right] \right\} \Biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{16 n_{0}^{2} \left( n_{1}^{2} + k_{1}^{2} \right) } \, \Biggl [ 2 \left( n_{0}^{2} + n_{1}^{2} + k_{1}^{2} \right) \biggl \{ \Bigl [ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \Bigr ] \\&\qquad \times \exp \left( 2 \alpha _{1} \right) + \Bigl [ \left( n_{1} - n_{2} \right) ^{2} + \left( k_{1} - k_{2} \right) ^{2} \Bigr ] \exp \left( - 2 \alpha _{1} \right) \biggr \} \\&\qquad + 4 \left( n_{0}^{2} - n_{1}^{2} - k_{1}^{2} \right) \left( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \right) \cos \left( 2 \gamma _{1} \right) \\&\qquad + 4 \left( n_{0}^{2} - n_{1}^{2} - k_{1}^{2} \right) \Bigl ( 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) \sin \left( 2 \gamma _{1} \right) \Bigr ) \Biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{16 n_{0}^{2} \left( n_{1}^{2} + k_{1}^{2} \right) } \, \Biggl [ 2 \left( n_{0}^{2} + n_{1}^{2} + k_{1}^{2} \right) \biggl \{ \bigl ( n_{1}^{2} + 2 n_{1} n_{2} + n_{2}^{2} + k_{1}^{2} \\&\qquad + 2 k_{1} k_{2} + k_{2}^{2} \bigr ) \, \exp \left( 2 \alpha _{1} \right) + \left( n_{1}^{2} - 2 n_{1} n_{2} - n_{2}^{2} + k_{1}^{2} - 2 k_{1} k_{2} + k_{2}^{2} \right) \\&\qquad \times \exp \left( - 2 \alpha _{1} \right) \biggr \} + 4 \left( n_{0}^{2} - n_{1}^{2} - k_{1}^{2} \right) \left( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \right) \cos \left( 2 \gamma _{1} \right) \\&\qquad + 4 \left( n_{0}^{2} - n_{1}^{2} - k_{1}^{2} \right) \Bigl ( 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) \sin \left( 2 \gamma _{1} \right) \Bigr ) \Biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{16 n_{0}^{2} \left( n_{1}^{2} + k_{1}^{2} \right) } \, \Biggl [ 2 \left( n_{0}^{2} + n_{1}^{2} + k_{1}^{2} \right) \biggl \{ \left( n_{1}^{2} + n_{2}^{2} + k_{1}^{2} + k_{2}^{2} \right) \Bigl [ \exp \left( 2 \alpha _{1} \right) \\&\qquad + \exp \left( - 2 \alpha _{1} \right) \Bigr ] + 2 \left( n_{1} n_{2} + k_{1} k_{2} \right) \Bigl [ \exp \left( 2 \alpha _{1} \right) - \exp \left( - 2 \alpha _{1} \right) \Bigr ] \biggr \} \\&\qquad + 4 \left( n_{0}^{2} - n_{1}^{2} - k_{1}^{2} \right) \left( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \right) \cos \left( 2 \gamma _{1} \right) \\&\qquad + 4 \left( n_{0}^{2} - n_{1}^{2} - k_{1}^{2} \right) \Bigl ( 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) \sin \left( 2 \gamma _{1} \right) \Bigr ) \Biggr ], \end{aligned} \end{aligned}$$
(36)
Noting that \(2 \cosh \left( 2 \alpha _{1} \right) = \left[ \exp \left( 2 \alpha _{1} \right) + \exp \left( - 2 \alpha _{1} \right) \right] \) and that \(2 \sinh \left( 2 \alpha _{1} \right) = \left[ \exp \left( 2 \alpha _{1} \right) - \exp \left( - 2 \alpha _{1} \right) \right] \), from Eq. (36) we see that
$$\begin{aligned} \begin{aligned} \frac{1+R}{T}&= \frac{n_{0}}{n_{2}} \ \frac{1}{16 n_{0}^{2} \left( n_{1}^{2} + k_{1}^{2} \right) } \, \Biggl [ 2 \left( n_{0}^{2} + n_{1}^{2} + k_{1}^{2} \right) \biggl \{ \left( n_{1}^{2} + n_{2}^{2} + k_{1}^{2} + k_{2}^{2} \right) \bigl ( 2 \cosh \left( 2 \alpha _{1} \right) \bigr ) \\&\qquad + 2 \bigl ( n_{1} n_{2} + k_{1} k_{2} \bigr ) \bigl ( 2 \sinh \left( 2 \alpha _{1} \right) \bigr ) \biggr \} + 4 \bigl (n_{0}^{2} - n_{1}^{2} - k_{1}^{2} \bigr ) \bigl ( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \bigr ) \\&\qquad \times \cos \left( 2 \gamma _{1} \right) + 4 \bigl ( n_{0}^{2} - n_{1}^{2} - k_{1}^{2} \bigr ) \Bigl ( 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) \sin \left( 2 \gamma _{1} \right) \Bigr ) \Biggr ], \end{aligned} \end{aligned}$$
(37)
which ultimately reduces to
$$\begin{aligned} \begin{aligned} \frac{1+R}{T} =&\frac{1}{4 n_{0}n_{2} \left( n_{1}^{2}+ k_{1}^{2} \right) } \\&\Bigg [ \left( n_{0}^{2} + n_{1}^{2} + k_{1}^{2} \right) \bigg \{ \left( n_{1}^{2} + n_{2}^{2} + k_{1}^{2} + k_{2}^{2} \right) \cosh \left( 2 \alpha _{1} \right) \\&\quad + 2 \left( n_{1} n_{2} + k_{1} k_{2} \right) \sinh \left( 2 \alpha _{1} \right) \bigg \} \ \\&+\left( n_{0}^{2} - n_{1}^{2} - k_{1}^{2} \right) \bigg \{ \left( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \right) \cos \left( 2 \gamma _{1} \right) \\&\quad + 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) \sin \left( 2 \gamma _{1} \right) \bigg \} \Bigg ], \end{aligned} \end{aligned}$$
(38)
which, through the use of Eqs. (15) and (16) for \(\alpha _{1}\) and \(\gamma _{1}\), respectively, may be shown to be identical to Eq. (3).
Recalling, from Eq. (22), that
$$\begin{aligned} \frac{1-R}{T} = \frac{n_{0}}{n_{2}} \ \frac{ \left[ 1 - \left( g_{1}^{2} + h_{1}^{2} \right) \right] \left[ \exp \left( 2 \alpha _{1} \right) - \left( g_{2}^{2} + h_{2}^{2} \right) \exp \left( - 2 \alpha _{1} \right) \right] - \left( A - C \right) \cos \left( 2 \gamma _{1} \right) - \left( B - D \right) \sin \left( 2 \gamma _{1} \right) }{\{ \left( 1 + g_{1} \right) ^{2} + h_{1}^{2} \}\{ \left( 1 + g_{2} \right) ^{2} + h_{2}^{2} \}}, \end{aligned}$$
(39)
and so, from the identities contained in Eqs. (23), (27), (28), (30), (33), and (34), it can be shown that
$$\begin{aligned} \begin{aligned} \frac{1-R}{T}&= \frac{n_{0}}{n_{2}} \, \Biggl [ \biggl\{ \frac{4 n_{0}n_{1}}{\left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \biggr\} \biggl \{ \exp \left( 2 \alpha _{1} \right) - \Biggl[ \frac{\left( n_{1} - n_{2} \right) ^{2} + \left( k_{1} - k_{2} \right) ^{2}}{\left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \Biggr] \\& \qquad \times \exp \left( - 2 \alpha _{1} \right) \biggr \} - \Biggl \{ \Biggl(4 \Biggl[\frac{ 2 n_{0} k_{1} }{ \left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \Biggr] \left[ \frac{ 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) }{\left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] \Biggr) \\&\qquad \times \cos \left( 2 \gamma _{1} \right) - \left( 4 \left[ \frac{ n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2}}{\left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] \left[ \frac{2 n_{0} k_{1}}{\left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2}} \right] \right) \\&\qquad \times \sin \left( 2 \gamma _{1} \right) \Biggr \} \Biggr ] \Bigg / \Biggl [ \left\{ \frac{4 n_{0}^{2}}{\left( n_{0} + n_{1} \right) ^{2} + k_{1}^{2} } \right\} \left\{ 4 \left[ \dfrac{n_{1}^{2} + k_{1}^{2}}{\left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2}} \right] \right\} \Biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{16 n_{0}^{2} \left( n_{1}^{2} + k_{1}^{2} \right) } \, \Biggl [ 4 n_{0} n_{1} \biggl \{ \Bigl [ \left( n_{1} + n_{2} \right) ^{2} + \left( k_{1} + k_{2} \right) ^{2} \Bigr ] \exp \left( 2 \alpha _{1} \right) \\&\qquad \quad- \Bigl [ \left( n_{1} - n_{2} \right) ^{2} + \left( k_{1} - k_{2} \right) ^{2} \Bigr ] \exp \left( - 2 \alpha _{1} \right) \biggr \} - \biggl \{ 16 n_{0} k_{1}\left( n_{1} k_{2} - n_{2} k_{1} \right) \\&\qquad \quad \times \cos \left( 2 \gamma _{1} \right) - 8 n_{0} k_{1} \left( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \right) \sin \left( 2 \gamma _{1} \right) \biggr \} \Biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{16 n_{0}^{2} \left( n_{1}^{2} + k_{1}^{2} \right) } \, \Biggl [ 4 n_{0} n_{1} \biggl \{ \left( n_{1}^{2} + 2 n_{1} n_{2} + n_{2}^{2} + k_{1}^{2} + 2 k_{1} k_{2} + k_{2}^{2} \right) \\&\quad\qquad \times \exp \left( 2 \alpha _{1} \right) - \left( n_{1}^{2} - 2 n_{1} n_{2} + n_{2}^{2} + k_{1}^{2} - 2 k_{1} k_{2} + k_{2}^{2} \right) \, \exp \left( - 2 \alpha _{1} \right) \biggr \} \\&\qquad - \biggl \{ 16 n_{0} k_{1}\left( n_{1} k_{2} - n_{2} k_{1} \right) \cos \left( 2 \gamma _{1} \right) - 8 n_{0} k_{1} \bigl ( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \bigr ) \\&\qquad \quad \times \sin \left( 2 \gamma _{1} \right) \biggr \} \Biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{16 n_{0}^{2} \left( n_{1}^{2} + k_{1}^{2} \right) } \, \Biggl [ 4 n_{0} n_{1} \biggl \{ \left( n_{1}^{2} + n_{2}^{2} + k_{1}^{2} + k_{2}^{2} \right) \bigr ( \exp \left( 2 \alpha _{1} \right) \\&\qquad \quad - \exp \left( - 2 \alpha _{1} \right) \bigr ) + 2 \left( n_{1} n_{2} + k_{1} k_{2} \right) \bigl ( \exp \left( 2 \alpha _{1} \right) + \exp \left( - 2 \alpha _{1} \right) \bigr ) \biggr \} \\&\qquad - \biggl \{ 16 n_{0} k_{1} \left( n_{1} k_{2} - n_{2} k_{1} \right) \cos \left( 2 \gamma _{1} \right) - 8 n_{0} k_{1} \left( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \right) \\&\qquad \quad \times \sin \left( 2 \gamma _{1} \right) \biggr \} \Biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{16 n_{0}^{2} \left( n_{1}^{2} + k_{1}^{2} \right) } \, \Biggl [ 4 n_{0} n_{1} \biggl \{ \left( n_{1}^{2} + n_{2}^{2} + k_{1}^{2} + k_{2}^{2} \right) \Bigl ( 2 \sinh \left( 2 \alpha _{1} \right) \Bigr ) \\&\qquad + 2 \left( n_{1} n_{2} + k_{1} k_{2} \right) \Bigl ( 2 \cosh \left( 2 \alpha _{1} \right) \Bigr ) \biggr \} - \biggl \{ 16 n_{0} k_{1} \left( n_{1} k_{2} - n_{2} k_{1} \right) \cos \left( 2 \gamma _{1} \right) \\&\qquad - 8 n_{0} k_{1} \left( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \right) \sin \left( 2 \gamma _{1} \right) \biggr \} \Biggr ], \\&= \frac{n_{0}}{n_{2}} \, \frac{1}{16 n_{0}^{2} \left( n_{1}^{2} + k_{1}^{2} \right) } \, \biggl [ 8 n_{1} \Bigl \{ \left( n_{1}^{2} + n_{2}^{2} + k_{1}^{2} + k_{2}^{2} \right) \sinh \left( 2 \alpha _{1} \right) \\&\qquad + 2 \left( n_{1} n_{2} + k_{1} k_{2} \right) \cosh \left( 2 \alpha _{1} \right) \Bigr \} - \Bigl \{ 16 k_{1}\left( n_{1} k_{2} - n_{2} k_{1} \right) \cos \left( 2 \gamma _{1} \right) \\&\qquad - 8 k_{1} \left( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \right) \sin \left( 2 \gamma _{1} \right) \Bigr \} \biggr ], \end{aligned} \end{aligned}$$
(40)
which ultimately reduces to
$$\begin{aligned} \begin{aligned} \frac{1-R}{T} =&\frac{1}{2 n_{2} \left( n_{1}^{2} + k_{1}^{2} \right) } \\&\Bigg [n_{1} \Bigg \{ \left( n_{1}^{2} +n_{2}^{2} + k_{1}^{2} + k_{2}^{2} \right) \sinh \left( 2 \alpha _{1} \right) \\&\qquad + 2 \left( n_{1} n_{2} + k_{1} k_{2} \right) \cosh \left( 2 \alpha _{1} \right) \Bigg \} \ \\&\qquad +k_{1} \Bigg \{ \left( n_{1}^{2} - n_{2}^{2} + k_{1}^{2} - k_{2}^{2} \right) \sin \left( 2 \gamma _{1} \right) \\&\qquad - 2 \left( n_{1} k_{2} - n_{2} k_{1} \right) \cos \left( 2 \gamma _{1} \right) \Bigg \} \Bigg ], \end{aligned} \end{aligned}$$
(41)
which, through the use of Eqs. (15) and (16) for \(\alpha _{1}\) and \(\gamma _{1}\), respectively, may be shown to be identical to Eq. (4).