[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Binary linear codes with few weights from Boolean functions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Boolean functions have very nice applications in coding theory and cryptography. In coding theory, Boolean functions have been used to construct linear codes in different ways. The objective of this paper is to construct binary linear codes with few weights using the defining-set approach. The defining sets of the codes presented in this paper are defined by some special Boolean functions and some additional restrictions. First, two families of binary linear codes with at most three or four weights from Boolean functions with at most three Walsh transform values are constructed and the parameters of their duals are also determined. Then several classes of binary linear codes with explicit weight enumerators are produced. Some of the binary linear codes are optimal or almost optimal according to the tables of best codes known maintained at http://www.codetables.de, and the duals of some of them are distance-optimal with respect to the sphere packing bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Anderson R., Ding C., Helleseth T., Kløve T.: How to build robust shared control systems. Des. Codes Cryptogr. 15, 111–124 (1998).

    MathSciNet  MATH  Google Scholar 

  2. Bouyukliev I., Fack V., Winne J., Willems W.: Projective two-weight codes with small parameters and their corresponding graphs. Des. Codes Cryptogr. 41, 59–78 (2006).

    MathSciNet  MATH  Google Scholar 

  3. Calderbank A.R., Goethala J.M.: Three-weight codes and association schemes. Philips J. Res. 39, 143–152 (1984).

    MathSciNet  MATH  Google Scholar 

  4. Calderbank A.R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986).

    MathSciNet  MATH  Google Scholar 

  5. Carlet C., Ding C., Yuan J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005).

    MathSciNet  MATH  Google Scholar 

  6. Cesmelioglu A., Meidl W.: A construction of bent functions from plateaued functions. Des. Codes Cryptogr. 66, 231–242 (2013).

    MathSciNet  MATH  Google Scholar 

  7. Cohen G., Mesnager S., Randriam H.: Yet another variation on minimal linear codes. Adv. Math. Commun. 10(1), 53–61 (2016).

    MathSciNet  MATH  Google Scholar 

  8. Coulter R.S.: On the evaluation of a class of Weil sums in character 2. N. Z. J. Math. 28, 171–184 (1999).

    MATH  Google Scholar 

  9. Coulter R.S.: The number of rational points of a class of Artin–Schreier curves. Finite Fields Appl. 8, 397–413 (2002).

    MathSciNet  MATH  Google Scholar 

  10. Cusick T., Dobbertin H.: Some new three-valued cross-correlation functions for binary \(m\)-sequences. IEEE Trans. Inf. Theory 42(4), 1238–1240 (1996).

    MATH  Google Scholar 

  11. Dillon J.F.: Elementary Hadamard Difference sets. PhD Thesis, University of Maryland (1974).

  12. Dillon J.F., Dobbertin H.: New cyclic difference sets with Singer parameters. Finite Fields Appl. 10, 342–389 (2004).

    MathSciNet  MATH  Google Scholar 

  13. Ding C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015).

    MathSciNet  MATH  Google Scholar 

  14. Ding C.: A construction of binary linear codes from Boolean functions. Discret. Math. 339, 2288–2303 (2016).

    MathSciNet  MATH  Google Scholar 

  15. Ding C.: The construction and weight distributions of all projective binary linear codes. arXiv:2010.03184.

  16. Ding K., Ding C.: Binary linear codes with three weights. IEEE Commun. Lett. 18(11), 1879–1882 (2014).

    Google Scholar 

  17. Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61(11), 5835–5842 (2015).

    MathSciNet  MATH  Google Scholar 

  18. Ding C., Niederreiter H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53(6), 2274–2277 (2007).

    MathSciNet  MATH  Google Scholar 

  19. Ding C., Wang X.: A coding theory construction of new systematic authentication codes. Theory Comput. Sci. 330(1), 81–99 (2005).

    MathSciNet  MATH  Google Scholar 

  20. Feng K., Luo J.: Value distribution of exponential sums from perfect nonlinear functions and their applications. IEEE Trans. Inf. Theory 53(9), 3035–3041 (2007).

    MathSciNet  MATH  Google Scholar 

  21. Gold R.: Maximal recursive sequences with 3-valued recursive cross-correlation function. IEEE Trans. Inf. Theory 14(1), 154–156 (1968).

    MATH  Google Scholar 

  22. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. (2007). http://www.codetables.de. Accessed 15 June 2020.

  23. Heng Z., Yue Q.: A class of binary linear codes with at most three weights. IEEE Commun. Lett. 19(9), 1488–1491 (2015).

    Google Scholar 

  24. Heng Z., Yue Q.: Two classes of two-weight linear codes. Finite Fields Appl. 38, 72–92 (2016).

    MathSciNet  MATH  Google Scholar 

  25. Heng Z., Wang W., Wang Y.: Projective binary linear codes from special Boolean functions. Appl. Algebra Eng. Commun. Comput. (2020). https://doi.org/10.1007/s00200-019-00412-z.

    Article  Google Scholar 

  26. Hollmann H.D.L., Xiang Q.: A proof of the Welch and Niho conjectures on cross-correlations of binary sequences. Finite Fields Appl. 7, 253–286 (2001).

    MathSciNet  MATH  Google Scholar 

  27. Jian G., Lin Z., Feng R.: Two-weight and three-weight linear codes based on Weil sums. Finite Fields Appl. 57, 92–107 (2019).

    MathSciNet  MATH  Google Scholar 

  28. Kasami T.: The weight enumerators for several classes of subcodes of the 2nd order binary RM codes. Inf. Control 18, 369–394 (1971).

    MATH  Google Scholar 

  29. Li F., Li X.: Weight distributions of several families of 3-weight binary linear codes. arXiv: 2002.01853v2.

  30. Li C., Li N., Helleseth T., Ding C.: The weight distribution of several classes of cyclic codes from APN monomials. IEEE Trans. Inf. Theory 60(8), 4710–4721 (2014).

    MathSciNet  MATH  Google Scholar 

  31. Li C., Yue Q., Fu F.: A construction of several classes of two-weight and three-weight linear codes. Appl. Algebra Eng. Commun. Comput. 28, 11–30 (2017).

    MathSciNet  MATH  Google Scholar 

  32. Li F., Wang Q., Lin D.: A class of three-weight and five-weight linear codes. Discret. Appl. Math. 241, 25–38 (2018).

    MathSciNet  MATH  Google Scholar 

  33. Luo J., Feng K.: On the weight distributions of two classes of cyclic codes. IEEE Trans. Inf. Theory 54(12), 5332–5344 (2008).

    MathSciNet  MATH  Google Scholar 

  34. Luo G., Cao X., Xu S., Mi J.: Binary linear codes with two or three weights from Niho exponents. Cryptogr. Commun. 10, 301–318 (2018).

    MathSciNet  MATH  Google Scholar 

  35. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam (1997).

    MATH  Google Scholar 

  36. Mesnager S.: Semibent functions from Dillon and Niho exponents, Kloosterman sums, and Dickson polynomial. IEEE Trans. Inf. Theory 57(11), 7443–7458 (2011).

    MathSciNet  MATH  Google Scholar 

  37. Mesnager S.: Linear codes with few weights from weakly regular bent functions based on a generic construction. Cryptogr. Commun. 9, 71–84 (2017).

    MathSciNet  MATH  Google Scholar 

  38. Mesnager S., Kim K.H., Choe J.H., Lee D.N., Go D.S.: Solving \(x+x^{2^l}+\cdots +x^{2^{ml}}=a\) over \({\mathbb{F}}_{2^n}\). Cryptogr. Commun. 12, 809–817 (2020).

    MathSciNet  MATH  Google Scholar 

  39. Rothaus O.S.: On “bent” functions. J. Comb. Theory A 20(3), 49–62 (1976).

    MATH  Google Scholar 

  40. Tan P., Zhou Z., Tang D., Helleseth T.: The weight distribution of a class of two-weight linear codes derived from Kloosterman sums. Cryptogr. Commun. 10, 291–299 (2018).

    MathSciNet  MATH  Google Scholar 

  41. Tang C., Li N., Qi Y., Zhou Z., Helleseth T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–1176 (2016).

    MathSciNet  MATH  Google Scholar 

  42. Tang D., Carlet C., Zhou Z.: Binary linear codes from vectorial Boolean functions and their weight distribution. Discret. Math. 340, 3055–3072 (2017).

    MathSciNet  MATH  Google Scholar 

  43. Wang Q., Ding K., Xue R.: Binary linear codes with two weights. IEEE Commun. Lett. 19(7), 1097–1100 (2015).

    Google Scholar 

  44. Wang X., Zheng D., Hu L., Zeng X.: The weight distributions of two classes of binary codes. Finite Fields Appl. 34, 192–207 (2015).

    MathSciNet  MATH  Google Scholar 

  45. Wang X., Zheng D., Liu H.: Several classes of linear codes and their weight distributions. Appl. Algebra Eng. Commun. Comput. 30, 75–92 (2019).

    MathSciNet  MATH  Google Scholar 

  46. Wu Y., Li N., Zeng X.: Linear codes with few weights from cyclotomic classes and weakly regular bent functions. Des. Codes Cryptogr. 12, 1255–1272 (2020).

    MathSciNet  MATH  Google Scholar 

  47. Xia Y., Li C.: Three-weight ternary linear codes from a family of power functions. Finite Fields Appl. 46, 17–37 (2017).

    MathSciNet  MATH  Google Scholar 

  48. Xiang C., Feng K., Tang C.: A construction of linear codes over \({\mathbb{F}}_{2^t}\) from Boolean functions. IEEE Trans. Inf. Theory 63(1), 169–176 (2017).

    Google Scholar 

  49. Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006).

    MathSciNet  MATH  Google Scholar 

  50. Zheng D., Bao J.: Four classes of linear codes from cyclotomic cosets. Des. Codes Cryptogr. 86, 1007–1022 (2018).

    MathSciNet  MATH  Google Scholar 

  51. Zhou Z., Li N., Fan C., Helleseth T.: Linear codes with two or three weights from quadratic bent functions. Des. Codes Cryptogr. 81, 1–13 (2015).

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the editors and the reviewers for their helpful comments and valuable suggestions, which have improved the presentation of this paper. This work was partially supported by The National Natural Science Foundation of China under Grant Numbers 11971156 and 12001175, 61977021 and The Hubei Province Science and Technology Innovation Major Project under Grant Number 2019ACA144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabin Zheng.

Additional information

Communicated by C. Carlet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zheng, D. & Zhang, Y. Binary linear codes with few weights from Boolean functions. Des. Codes Cryptogr. 89, 2009–2030 (2021). https://doi.org/10.1007/s10623-021-00898-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00898-0

Keywords

Mathematics Subject Classification

Navigation