Abstract
Meghalaya is well-known for its fragile ecosystem; because of its undulating landscape and high-intensity rainfall, Meghalaya faces severe soil erosion issues. This study aims to conduct a quantitative analysis to understand the soil loss in the region. Using various datasets covering rainfall, soil properties, topography, and land cover, this study employs a Geographic Information System (GIS) framework to apply the Revised Universal Soil Loss Equation (RUSLE) for soil erosion loss estimation. The study estimates the region’s mean soil erosion at 14 t ha−1 y−1, subsequently causing an annual loss of 5871.32 t ha−1 y−1. The sorting of the area into six risk zones reveals that 66% experience slight to moderate erosion, 18% experience high to very high erosion, and 16% encounter severe erosion. Study findings reveal that the LS factor significantly influences soil erosion. Different physiographic regions show varying erosion rates: Khasi Hills show the highest (20.94 t. ha–1. y–1), trailed by Jaintia Hills (13.35) and Garo Hills (5.47). The research highlights open and degraded forest areas with the highest erosion rates, followed by agricultural lands, range land, and barren land. Definite terrain characteristics, such as slope angles within 0 to 15 degrees and elevations greater than 1000 m, appear as erosion-prone areas. This research highlights the critical requirement for targeted preservation efforts and ecologically sound land use practices in Meghalaya. The findings provide essential guidance and regulation for stakeholders, policymakers, land managers, and conservationists to implement effective erosion control measures and protect the region’s valuable soil resources.
Similar content being viewed by others
Data availability
The datasets generated or analysed during this study are available from the corresponding author; they can be provided upon reasonable request.
Abbreviations
- ANOVA:
-
Analysis of Variance
- CRU:
-
Climate Research Unit
- DEM:
-
Digital Elevation Model
- FAO-UNESCO:
-
Food and Agriculture Organization of the United Nations Educational, Scientific and Cultural Organization
- GIS:
-
Geographic Information System
- IDW:
-
Inverse distance weighted
- LULC:
-
Land Use Land Cover
- NDVI:
-
Normalized Difference Vegetation Index
- RS:
-
Remote Sensing
- RUSLE:
-
Revised Universal Soil Loss Equation
- USLE:
-
Universal Soil Loss Equation
References
Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027
Abdo, H., & Salloum, J. (2017). Mapping the soil loss in Marqya basin: Syria using RUSLE model in GIS and RS techniques. Environmental Earth Sciences, 76(3), 1–10. https://doi.org/10.1007/s12665-017-6424-0
Abu Hammad, A., Lundekvam, H., & Børresen, T. (2004). Adaptation of RUSLE in the eastern part of the Mediterranean region. Environmental Management, 34(6), 829–841. https://doi.org/10.1007/s00267-003-0296-7
Ahmad, W. S., Jamal, S., Taqi, M., El-Hamid, H. T. A., & Norboo, J. (2022). Estimation of soil erosion and sediment yield concentrations in Dudhganga watershed of Kashmir Valley using RUSLE & SDR model. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02705-9
Aksoy, H., & Kavvas, M. L. (2005). A review of hillslope and watershed scale erosion and sediment transport models. CATENA, 64(2–3), 247–271. https://doi.org/10.1016/j.catena.2005.08.008
Almagro, A., Thomé, T. C., Colman, C. B., Pereira, R. B., Marcato Junior, J., Rodrigues, D. B. B., & Oliveira, P. T. S. (2019). Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. International Soil and Water Conservation Research, 7(4), 325–334. https://doi.org/10.1016/j.iswcr.2019.08.005
Amsalu, T., & Mengaw, A. (2014). GIS-based soil loss estimation using RUSLE model: The case of Jabi Tehinan Woreda, ANRS, Ethiopia. Natural Resources, 5, 616–626. https://doi.org/10.4236/nr.2014.511054
Angima, S. D., Stott, D. E., O’Neill, M. K., Ong, C. K., & Weesies, G. A. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems and Environment, 97(1–3), 295–308. https://doi.org/10.1016/S0167-8809(03)00011-2
Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
Ashiagbor, G., Forkuo, E. K., Laari, P., & Aabeyir, R. (2013). Modeling soil erosion using Rusle and Gis tools. International Journal of Remote Sensing & Geoscience, 2(4).
Avand, M., Nasiri Khiavi, A., Mohammadi, M., & Tiefenbacher, J. P. (2023). Prioritizing sub-watersheds based on soil-erosion potential by integrating RUSLE and game-theory algorithms. Advances in Space Research, 72(2), 471–487. https://doi.org/10.1016/j.asr.2023.03.031
Ayalew, D. A., Deumlich, D., Šarapatka, B., & Doktor, D. (2020). Quantifying the sensitivity of NDVI-based C factor estimation and potential soil erosion prediction using spaceborne earth observation data. Remote Sensing, 12(7). https://doi.org/10.3390/rs12071136
Beasley, D. B., & Huggins, L. F. (1981). ANSWERS Users Manual. U.S. Environmental Protection Agency, Region V.
Bircher, P., Liniger, H. P., & Prasuhn, V. (2022). Comparison of long-term field-measured and RUSLE-based modelled soil loss in Switzerland. Geoderma Regional, 31. https://doi.org/10.1016/j.geodrs.2022.e00595
Biswas, H., Raizada, A., Mandal, D., Kumar, S., Srinivas, S., & Mishra, P. K. (2015). Identification of areas vulnerable to soil erosion risk in India using GIS methods. Solid Earth, 6(4), 1247–1257. https://doi.org/10.5194/se-6-1247-2015
Chakrabortty, R., Pal, S. C., Sahana, M., Mondal, A., Dou, J., Pham, B. T., & Yunus, A. P. (2020). Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Natural Hazards, 104, 1259–1294. https://doi.org/10.1007/s11069-020-04213-3
Chakrabortty, R., Pal, S. C., Arabameri, A., Ngo, P. T. T., Chowdhuri, I., Roy, P., et al. (2022). Water-induced erosion potentiality and vulnerability assessment in Kangsabati river basin, eastern India. Environment, Development and Sustainability, 24(3), 3518–3557. https://doi.org/10.1007/s10668-021-01576-w
Chuenchum, P., Xu, M., & Tang, W. (2020). Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang-Mekong River by using the modified RUSLE model. International Soil and Water Conservation Research, 8(3), 213–227. https://doi.org/10.1016/j.iswcr.2020.06.006
Da Cunha, E. R., Bacani, V. M., & Panachuki, E. (2017). Modeling soil erosion using RUSLE and GIS in a watershed occupied by rural settlement in the Brazilian Cerrado. Natural Hazards, 85(2), 851–868. https://doi.org/10.1007/s11069-016-2607-3
Das, B., Bordoloi, R., Thungon, L. T., Paul, A., Pandey, P. K., Mishra, M., & Tripathi, O. P. (2020). An integrated approach of GIS, RUSLE and AHP to model soil erosion in West Kameng watershed, Arunachal Pradesh. Journal of Earth System Science, 129. https://doi.org/10.1007/s12040-020-1356-6
Das, S., Bora, P. K., & Das, R. (2022). Estimation of slope length gradient (LS) factor for the sub-watershed areas of Juri River in Tripura. Modeling Earth Systems and Environment, 8, 1171–1177. https://doi.org/10.1007/s40808-021-01153-0
Das, J., Saha, P., Mitra, R., Alam, A., & Kamruzzaman, M. (2023). GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e16186
Dash, S. S., & Maity, R. (2023). Effect of climate change on soil erosion indicates a dominance of rainfall over LULC changes. Journal of Hydrology: Regional Studies, 47. https://doi.org/10.1016/j.ejrh.2023.101373
De Roo, A. P. J., Wesseling, C. G., Jetten, V. G., & Ritsema, C. J. (1996). LISEM: A physically-based hydrological and soil erosion model incorporated in a GIS. Application of geographic information systems in hydrology and water resources management. Proceedings of HydroGIS’96 conference, Vienna, 1996, (235), 395–403.
Erencin, Z. (2000). C-Factor Mapping Using Remote Sensing and GIS. A case study of Lom Sak/Lom Kao, Thailand. International Institute for Aerospace Survey and Earth Sciences (ITC), Enschede/Holland, Justus-Liebig-Universitat Giessen, 28 p.
Fayas, C. M., Abeysingha, N. S., Nirmanee, K. G. S., Samaratunga, D., & Mallawatantri, A. (2019). Soil loss estimation using rusle model to prioritize erosion control in KELANI river basin in Sri Lanka. International Soil and Water Conservation Research, 7(2), 130–137. https://doi.org/10.1016/j.iswcr.2019.01.003
Ferreira, V. A., & Smith, R. E. (1992). OPUS: An integrated simulation model for transport of nonpoint-source pollutants at the field scale, user manual. U.S. Agricultural Research Service.
Ferro, V., & Porto, P. (2000). Sediment Delivery Distributed (SEDD) Model. Journal of Hydrologic Engineering, 5(4), 411–422.
Flacke, W., Auerswald, K., & Neufang, L. (1990). Combining a modified Universal Soil Loss Equation with a digital terrain model for computing high resolution maps of soil loss resulting from rain wash. CATENA, 17(4–5), 383–397. https://doi.org/10.1016/0341-8162(90)90040-K
Fu, B. J., Zhao, W. W., Chen, L. D., Zhang, Q. J., Lü, Y. H., Gulinck, H., & Poesen, J. (2005). Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degradation and Development, 16(1), 73–85. https://doi.org/10.1002/ldr.646
Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007
Ghosal, K., & Bhattacharya, S. D. (2020). A Review of RUSLE Model. Journal of the Indian Society of Remote Sensing, 48(4), 689–707. https://doi.org/10.1007/s12524-019-01097-0
Gorrepotu, S. R., Debnath, K., & Mahapatra, R. N. (2023a). Multi-response optimization of the chemical treatment process parameters influencing the tensile, flexural, compression, and shear PROPERTIES of the injection moulded green composites. Journal of Polymers and the Environment, 31(1), 112–130. https://doi.org/10.1007/s10924-022-02613-z
Gorrepotu, S. R., Debnath, K., & Mahapatra, R. N. (2023b). Mechanical, thermal, and morphological behavior of pineapple leaf fibre and polylactic acid green composites fabricated by varying fiber loading, fiber length, and injection parameters. Polymer Engineering and Science, 63(8), 2498–2510. https://doi.org/10.1002/pen.26391
Gupta, S., & Kumar, S. (2017). Simulating climate change impact on soil erosion using RUSLE model − A case study in a watershed of mid-Himalayan landscape. Journal of Earth System Science, 126. https://doi.org/10.1007/s12040-017-0823-1
Gwapedza, D., Hughes, D. A., Slaughter, A. R., & Mantel, S. K. (2021). Temporal influences of vegetation cover (C) dynamism on musle sediment yield estimates: Ndvi evaluation. Water, 13(19). https://doi.org/10.3390/w13192707
Habtu, W., & Jayappa, K. S. (2022). Assessment of soil erosion extent using RUSLE model integrated with GIS and RS: the case of Megech-Dirma watershed, Northwest Ethiopia. Environmental Monitoring and Assessment, 194. https://doi.org/10.1007/s10661-022-09965-y
Hayicho, H., Alemu, M., & Kedir, H. (2019). Assessment of land-use and land cover change effect on Melka Wakena hydropower dam in Melka Wakena catchment of Sub-Upper Wabe-Shebelle Watershed, South Eastern Ethiopia. Agricultural Sciences, 10(06), 819–840. https://doi.org/10.4236/as.2019.106063
Iaaich, H., Moussadek, R., Baghdad, B., Mrabet, R., Douaik, A., Abdelkrim, D., & Bouabdli, A. (2016). Soil erodibility mapping using three approaches in the Tangiers province –Northern Morocco. International Soil and Water Conservation Research, 4(3), 159–167. https://doi.org/10.1016/j.iswcr.2016.07.001
Igwe P. U., Onuigbo, A. A., Chinedu, O. C., Ezezku, I. I., & Muoneke, M. M. (2017). Soil erosion: A review of models and applications. International Journal of Advanced Engineering Research and Science, 4(12), 138–150. https://doi.org/10.22161/ijaers.4.12.22
Imamoglu, A., & Dengiz, O. (2017). Determination of soil erosion risk using RUSLE model and soil organic carbon loss in Alaca catchment (Central Black Sea region, Turkey). Rendiconti Lincei, 28(1), 11–23. https://doi.org/10.1007/s12210-016-0556-0
Islam, M. R., Jaafar, W. Z. W., Hin, L. S., Osman, N., & Karim, M. R. (2020). Development of an erosion model for Langat River Basin, Malaysia, adapting GIS and RS in RUSLE. Applied Water Science, 10. https://doi.org/10.1007/s13201-020-01185-4
Islami, F. A., Tarigan, S. D., Wahjunie, E. D., & Dasanto, B. D. (2022). Accuracy assessment of land use change analysis using google earth in Sadar Watershed Mojokerto Regency. IOP Conference Series: Earth and Environmental Science, 950. https://doi.org/10.1088/1755-1315/950/1/012091
Jahun, B. G., Ibrahim, R., Dlamini, N. S., & Musa, S. M. (2015). Review of soil erosion assessment using RUSLE model and GIS. Journal of Biology, Agriculture and Healthcare, 5(9), 36–47.
Jaiswal, M. K., Thakuria, G., Borah, A. C., & Saikia, R. (2014). Evaluation of parametic impact on soil loss of Panchnoi river basin, North-east India, using revised universal soil loss equation (rusle). The Clarion, 3(1), 51–60.
Jena, R. K., Padua, S., Ray, P., Ramachandran, S., Bandyopadhyay, S., Deb Roy, P., et al. (2018). Assessment of soil erosion in sub tropical ecosystem of Meghalaya, India using remote sensing, GIS and RUSLE. Indian Journal of Soil Conservation, 46(3), 273–282.
Joshi, V. U. (2018). Soil Loss Estimation based on RUSLE along the Central Hunter Valley Region, NSW, Australia. Journal of the Geological Society of India, 91(5), 554–562. https://doi.org/10.1007/s12594-018-0904-z
Joshi, P., Adhikari, R., Bhandari, R., Shrestha, B., Shrestha, N., Chhetri, S., et al. (2023). Himalayan watersheds in Nepal record high soil erosion rates estimated using the RUSLE model and experimental erosion plots. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e15800
Karaburun, A. (2010). Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean Journal of Applied Sciences, 3(1), 77–85.
Kebede, B., Tsunekawa, A., Haregeweyn, N., Adgo, E., Ebabu, K., Meshesha, D. T., et al. (2021). Determining C- and P-factors of RUSLE for different land uses and management practices across agro-ecologies: Case studies from the Upper Blue Nile basin, Ethiopia. Physical Geography, 42(2), 160–182. https://doi.org/10.1080/02723646.2020.1762831
Kim, H. S., & Julien, P. Y. (2006). Soil erosion modeling using RUSLE and GIS on the Imha Watershed. Water Engineering Research, 7(1).
Knisel, W. G. (1982). CREAMS a field-scale model for chemicals, runoff, and erosion from agricultural management systems. U.S. Department of Agriculture.
Koirala, P., Thakuri, S., Joshi, S., & Chauhan, R. (2019). Estimation of Soil Erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences, 9(4). https://doi.org/10.3390/geosciences9040147
Kulimushi, L. C., Choudhari, P., Mubalama, L. K., & Banswe, G. T. (2021). GIS and remote sensing-based assessment of soil erosion risk using RUSLE model in South-Kivu province, eastern, Democratic Republic of Congo. Geomatics, Natural Hazards and Risk, 12(1), 961–987. https://doi.org/10.1080/19475705.2021.1906759
Kumar, A., Satyannarayana, R., & Rajesh, B. G. (2022a). Correlation between SPT-N and shear wave velocity (VS) and seismic site classification for Amaravati city, India. Journal of Applied Geophysics, 205. https://doi.org/10.1016/j.jappgeo.2022.104757
Kumar, P., Garg, V., Mittal, S., & Murthy, Y. V. N. K. (2022b). GIS-based hazard and vulnerability assessment of a torrential watershed. Environment, Development and Sustainability, 24, 921–951. https://doi.org/10.1007/s10668-021-01476-z
Lane, L. J., & Nearing, M. A. (1989). USDA- Water Erosion Prediction Project: Hill Slope Profile Model Documentation. NSERL Report No. 2, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, Indiana.
Lenka, N. K., Satapathy, K. K., Lal, R., Singh, R. K., Singh, N. A. K., Agrawal, P. K., et al. (2017). Weed strip management for minimizing soil erosion and enhancing productivity in the sloping lands of north-eastern India. Soil and Tillage Research, 170, 104–113. https://doi.org/10.1016/j.still.2017.03.012
Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondônia, Brazilian Amazonia: Using RUSLE, remote sensing and GIS. Land Degradation and Development, 15(5), 499–512. https://doi.org/10.1002/ldr.634
Maji, A.K., Reddy, G.P.O., & Sarkar, D. (2012). Degraded and Wastelands of India Status and Spatial Distribution. Indian Council of Agricultural Research and National Academy of Agricultural Sciences.
Mandal, S., & Gagoi, M. (2022). Eastern Himalayan Division : A Potential Zone to be Hub of Agriculture. Indian Farmer, 9(12), 559–566.
Mandal, D., & Sharda, V. N. (2013). Appraisal of soil erosion risk in the eastern himalayan region of india for soil conservation planning. Land Degradation and Development, 24(5), 430–437. https://doi.org/10.1002/ldr.1139
Masroor, M., Sajjad, H., Rehman, S., Singh, R., Hibjur Rahaman, M., Sahana, M., et al. (2022). Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin, India. Geoscience Frontiers, 13(2), 101312. https://doi.org/10.1016/j.gsf.2021.101312
Mohammed, S., Alsafadi, K., Talukdar, S., Kiwan, S., Hennawi, S., Alshihabi, O., et al. (2020). Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sensing Applications: Society and Environment, 20. https://doi.org/10.1016/j.rsase.2020.100375
Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., et al. (1998). The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527–544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6%3c527::AID-ESP868%3e3.0.CO;2-5
Mutti, P. R., Dubreuil, V., Bezerra, B. G., Arvor, D., de Oliveira, C. P., & Santos e Silva, C. M. (2020). Assessment of Gridded CRU TS Data for Long-Term Climatic Water Balance Monitoring over the São Francisco Watershed, Brazil. Atmosphere, 11. https://doi.org/10.3390/atmos11111207
Narayana, D. V. V., & Babu, R. (1983). Estimation of soil erosion in India. Journal of Irrigation and Drainage Engineering, 109(4), 419–434. https://doi.org/10.1061/(asce)0733-9437(1983)109:4(419)
Nasir Ahmad, N. S. B., Mustafa, F. B., & Muhammad Yusoff, S. Y. (2023). Spatial prediction of soil erosion risk using knowledge-driven method in Malaysia’s Steepland Agriculture Forested Valley. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-03251-8
Oldeman, L. R., Hakkeling, R. T., & Sombroek, W. G. (1990). ISRIC Report 1990/07: World map of the status of human-induced soil degradation: An Explanatory note. Wageningen.
Olika, G., Fikadu, G., & Gedefa, B. (2023). GIS based soil loss assessment using RUSLE model: A case of Horo district, western Ethiopia. Heliyon, 9(2). https://doi.org/10.1016/j.heliyon.2023.e13313
Opeyemi, O. A., Abidemi, F. H., & Victor, O. K. (2019). Assessing the impact of soil erosion on residential areas of Efon-Alaaye Ekiti, Ekiti-State, Nigeria. International Journal of Environmental Planning and Management, 5(1), 23–31.
Pal, S. C., & Chakrabortty, R. (2019). Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Advances in Space Research, 64(2), 352–377. https://doi.org/10.1016/j.asr.2019.04.033
Pal, S. C., Chakrabortty, R., Roy, P., Chowdhuri, I., Das, B., Saha, A., & Shit, M. (2021). Changing climate and land use of 21st century influences soil erosion in India. Gondwana Research, 94, 164–185. https://doi.org/10.1016/j.gr.2021.02.021
Pan, J., & Wen, Y. (2014). Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. Natural Hazards, 71(3), 2187–2205. https://doi.org/10.1007/s11069-013-1006-2
Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. CATENA, 147, 595–620. https://doi.org/10.1016/j.catena.2016.08.002
Poreba, G. J., & Prokop, P. (2011). Estimation of soil erosion on cultivated fields on the hilly Meghalaya Plateau, North-East India. Geochronometria, 38(1), 77–84. https://doi.org/10.2478/s13386-011-0008-7
Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215. https://doi.org/10.1016/j.gsf.2011.11.003
Räsänen, T. A., Tähtikarhu, M., Uusi-Kämppä, J., Piirainen, S., & Turtola, E. (2023). Evaluation of RUSLE and spatial assessment of agricultural soil erosion in Finland. Geoderma Regional, 32. https://doi.org/10.1016/j.geodrs.2023.e00610
Rawat, K. S., & Singh, S. K. (2018). Appraisal of soil conservation capacity using NDVI model-based C factor of RUSLE model for a semi arid ungauged watershed: A case study. Water Conservation Science and Engineering, 3, 47–58. https://doi.org/10.1007/s41101-018-0042-x
Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: Revised universal soil loss equation. Journal of Soil & Water Conservation, 46(1), 30–33.
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703. Washington, D.C.
Rose, C. W., Coughlan, K. J., & Fentie, B. (1998). Griffith University Erosion System Template (GUEST). In D. Boardman, J., Favis-Mortlock (Ed.), Modelling Soil Erosion by Water (pp. 399–412). NATO ASI Series. https://doi.org/10.1007/978-3-642-58913-3_30
Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use / land cover classification using remote sensing and GIS. International Journal of Geosciences, 8, 611–622. https://doi.org/10.4236/ijg.2017.84033
Schmidt, J. (1991). A mathematical model to simulate rainfall erosion. Catena Supplement (Giessen), 19, 101–109.
Schmidt, S., Alewell, C., & Meusburger, K. (2018). Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland. Remote Sensing of Environment, 211, 89–104. https://doi.org/10.1016/j.rse.2018.04.008
Schönbrodt, S., Saumer, P., Behrens, T., Seeber, C., & Scholten, T. (2010). Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China. Journal of Earth Science, 21(6), 835–845. https://doi.org/10.1007/s12583-010-0135-8
Schramm, M. (1994). Ein Erosionsmodell mit zeitlich und raumlich veranderlicher Rillengeometrie. Mitt Inst Wasserbau Und Kulturtechnik, 190.
Shafizadeh-moghadam, H., Asghari, A., Taleai, M., & Tayyebi, A. (2017). Sensitivity analysis and accuracy assessment of the land transformation model using cellular automata. GIScience & Remote Sensing, 54(5), 639–656. https://doi.org/10.1080/15481603.2017.1309125
Sharda, V. N., & Ojasvi, P. R. (2016). A revised soil erosion budget for India: Role of reservoir sedimentation and land-use protection measures. Earth Surface Processes and Landforms, 41(14), 2007–2023. https://doi.org/10.1002/esp.3965
Sharpley, A. N., & Williams, J. R. (1990). EPIC: The erosion-productivity impact calculator. Model documentation. U.S. Department of Agriculture Technical Bulletin No. 1768, 235.
Shit, P. K., Nandi, A. S., & Bhunia, G. S. (2015). Soil erosion risk mapping using RUSLE model on jhargram sub-division at West Bengal in India. Modeling Earth Systems and Environment, 1(3), 1–12. https://doi.org/10.1007/s40808-015-0032-3
Singh, S., & Dubey, A. (2002). Gully erosion and management methods and application (A field manual) (pp. 1–2). New Academic Publishers.
Sivapalan, M., Viney, N. R., Zammit, C., Singh, V. P., & Frevert, D. K. (2002). LASCAM: Large scale catchment model. Mathematical Models of Large Watershed Hydrology, 579–648.
Tagung, T., Singh, S. K., Singh, P., Kashiwar, S. R., Singh, K. K., & Singh, A. (2022). A review on assessment of soil loss through erosion using revised universal soil loss equation (RUSLE) model. The Pharma Innovation Journal, 11(8), 486–493.
Taye, G., Vanmaercke, M., Poesen, J., Wesemael, B. V., Tesfaye, S., Teka, D., et al. (2018). Determining RUSLE P- and C-factors for stone bunds and trenches in rangeland and cropland, North Ethiopia. Land Degradation and Development, 29(3), 812–824. https://doi.org/10.1002/ldr.2814
Terranova, O., Antronico, L., Coscarelli, R., & Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology, 112(3–4), 228–245. https://doi.org/10.1016/j.geomorph.2009.06.009
Thapa, P. (2020). Spatial estimation of soil erosion using RUSLE modeling: A case study of Dolakha district, Nepal. Environmental Systems Research, 9. https://doi.org/10.1186/s40068-020-00177-2
Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893–906. https://doi.org/10.1016/j.gsf.2017.05.011
Tian, P., Zhu, Z., Yue, Q., He, Y., Zhang, Z., Hao, F., et al. (2021). Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China. International Soil and Water Conservation Research, 9(3), 433–444. https://doi.org/10.1016/j.iswcr.2021.04.007
Vatandaşlar, C., & Yavuz, M. (2017). Modeling cover management factor of RUSLE using very high-resolution satellite imagery in a semiarid watershed. Environmental Earth Sciences, 76(2). https://doi.org/10.1007/s12665-017-6388-0
Vijith, H., Seling, L. W., & Dodge-Wan, D. (2018). Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo. Environment, Development and Sustainability, 20(3), 1365–1384. https://doi.org/10.1007/s10668-017-9946-4
Williams, J. R. (1975). Sediment-yield prediction with universal equation using runoff energy factor. In Present and prospective technology for predicting sediment yield and sources. USDA, Agricultural Research Service.
Williams, J. R. (1995). The EPIC model. In V. P. Singh (Ed.), Computer models of watershed hydrology, Chapter 25. Water Resources Publications.
Wischmeier, W. H., & Smith, D. D. (1972). Rainfall-erosion losses from cropland east of the rocky mountains: Guide for selection of practices for soil and water conservation. USDA agricultural handbook No.282, Washington, DC.
Wischmeier, W. H., & Smith, D. D. (1978). Predicting Rainfall Erosion losses. A guide to conservation planning. The USDA agricultural handbook No. 537, Washington, DC.
Woolhiser, D. A., Smith, R. E., & Goodrich, D. C. (1990). KINEROS, A Kinematic Runoff and Erosion Model: Documentation and user manual. USDA, Agricultural research service, ARS-77.
Young, R. A., Onstad, C. A., Bosch, D. D., & Anderson, W. P. (1987). AGNPS, Agricultural Non-PointSource Pollution Model - A watershed analysis tool. USDA, Conservation Research Report-35, Albancy, CA.
Acknowledgements
The authors wish to thank the anonymous reviewers for their constructive comments and insightful suggestions which helped us to improve the overall quality of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Badavath, N., Sahoo, S. & Samal, R. Assessing soil erosion risk in Meghalaya, India: integrating geospatial data with RUSLE model. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04855-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10668-024-04855-4