[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Modeling NPP and NDVI time series in different bioclimatic regions of Iran

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Vegetation is one of the important components of ecosystems that usually changes seasonally. An accurate parameterization of vegetation cover dynamics by developing time series models can strengthen our understanding of vegetation change. This research aims to investigate and model the temporal changes of net primary production (NPP) and normalized difference vegetation index (NDVI) across bioclimatic regions of Iran, including the Khazari, Baluchi, semi-desert, steppe, semi-steppe, and arid forests. We used Moderate Resolution Imaging Spectroradiometer (MODIS) sensor products for NPP and NDVI time series (MOD17A2 and MOD13Q1, respectively). The SARIMA (Seasonal Autoregressive Integrated Moving Average) time series model is developed for NPP and NDVI time series. The investigation of autocorrelation functions (ACF) showed a strong seasonality in NPP and NDVI at the 12-month lag time. Comparing the lag times from 1 to 24 month for different regions shows that the NPP variable has a stronger seasonality. The evaluation of error criteria which showed NPP time series models based on RMSE, R2, MRE, and CE criteria was better, while based on the ME criteria, the models perform better for NDVI time series (for example, in Khazari region for NPP and NDVI time series, respectively, ME = 3.67, 0.05, RMSE = 0.12, 0.18, R2 = 0.87, 0.63, MRE = 0.02, 0.12, and CE = 0.84, 0.12). The selected models provided a short-term forecasting of the NPP and NDVI index for study regions at 24-month time, which is useful for the planning and management to reduce vegetation degradation and preserve ecosystem and biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

ACF:

Autocorrelation functions

AR:

Autoregressive

ARMA:

Autoregressive moving average

ARIMA:

Autoregressive Integrated Moving Average

CASA:

Carnegie-Ames-Stanford-Approach

MA:

Moving average

MODIS:

Moderate Resolution Imaging Spectroradiometer

NPP:

Net primary production

NDVI:

Normalized difference vegetation index

PACF:

Partial autocorrelation functions

SAR:

Seasonal autoregressive

SARIMA:

Seasonal Autoregressive Integrated Moving Average

SMA:

Seasonal moving average

References

  • Aggarwal, A., Alshehri, M., Kumar, M., Alfarraj, O., Sharma, P., & Pardasani, K. R. (2020). Landslide data analysis using various time-series forecasting models. Journal of Electrical and Computer Engineering, 88, 106858.

    Article  Google Scholar 

  • Anderson, O. D. (1977). The Box-Jenkins approach to time series analysis, RARIO. Recherche Operationelle, 11, 3–29.

    Google Scholar 

  • Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O’Donnell, D., Schurgers, G., Sorvari, S., & Vesala, T. (2010). Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience, 3(8), 525–532.

    Article  CAS  Google Scholar 

  • Bai, X., Zhang, S., Smith, P., Li, C., Xiong, L., Du, C., Xue, Y., Li, Z., Long, M., Li, M., Zhang, X., Yang, S., Luo, Q., & Shen, X. (2024). Resolving controversies surrounding carbon sinks from carbonate weathering. Science China Earth Sciences, 67(9), 2705–2717. https://doi.org/10.1007/s11430-024-1391-0

    Article  CAS  Google Scholar 

  • Bai, Y. (2021). Analysis of vegetation dynamics in the Qinling-Daba Mountains region from MODIS time series data. Ecological Indicators, 129, 108029. https://doi.org/10.1016/j.ecolind.2021.108029

    Article  Google Scholar 

  • Bégué, A., Vintrou, E., Ruelland, D., Claden, M., & Dessay, N. (2011). Can a 25-year trend in Soudano-Sahelian vegetation dynamics be interpreted in terms of land use change? A remote sensing approach. Global Environmental Change, 21, 413–420. https://doi.org/10.1016/j.gloenvcha.2011.02.002

    Article  Google Scholar 

  • Box, G., & Jenkins, G. (1970). Time series analysis: Forecasting and control. Holden-Day.

  • Busetto, L., Meroni, M., & Colombo, R. (2008). Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series. Remote Sensing Environment, 112, 118–131.

    Article  Google Scholar 

  • Fathian, F., Ghadami, M., & Dehghan, Z. (2022). Observed and projected changes in temperature and precipitation extremes based on CORDEX data over Iran. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-022-04066-9

    Article  Google Scholar 

  • Fathian, F., Ghadami, M., Haghighi, P., Naderi, S., & Ghaedi, Z. (2020). Assessment of changes in climate extremes of temperature and precipitation over Iran. Theoretical and Applied Climatology, 141, 1119–1133.

    Article  Google Scholar 

  • Fernández-Manso, A., Quintano, C., & Fernández-Manso, O. (2011). Forecast of NDVI in coniferous areas using temporal ARIMA analysis and climatic data at a regional scale. International Journal of Remote Sensing, 32(6), 1595–1617.

    Article  Google Scholar 

  • Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M. D., Neigh, C. S. R., & Reichstein, M. (2013). Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sensing, 5(5), 2113–2144. https://doi.org/10.3390/rs5052113

    Article  Google Scholar 

  • Ghadami, M., Raziei, T., Amini, M., & Modarress, R. (2020). Regionalization of drought severity–duration index across Iran. Natural Hazards, 103, 2813–2827.

    Article  Google Scholar 

  • Ghasemi Karakani, E., Malekian, A., Gholami, S., & Liu, J. (2021). Spatiotemporal monitoring and change detection of vegetation cover for drought management in the Middle East. Theoretical and Applied Climatology, 144, 229–315.

    Google Scholar 

  • Han, Z., & Song, W. (2022). Inter annual trends of vegetation and responses to climate change and human activities in the Great Mekong Subregion. Global Ecology and Conservation, 38, e02215. https://doi.org/10.1016/j.gecco.2022.e02215

    Article  Google Scholar 

  • Hao, R., Yu, D., Huang, T., Li, S., & Qiao, J. (2022). NPP plays a constraining role on water-related ecosystem services in an alpine ecosystem of Qinghai. China. Ecological Indicator, 138, 108846. https://doi.org/10.1016/j.ecolind.2022.108846

    Article  Google Scholar 

  • Hipel, K. W., & Mcleod, A. I. (1994). Time series modelling of water resourses and environmental systems. Elsevier.

  • Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32, 1–6.

    Article  Google Scholar 

  • Kamali, A., & khosravi, M., & Hamidianpour, m. (2020). Spatial-temporal analysis of net primary production (NPP) and its relationship with climate factor in Iran. Environmental Monitoring and Assessment, 718(192), 1–20.

    Google Scholar 

  • Liu, C., Dong, X., & Liu, Y. (2015). Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China. CATENA, 125, 190–199. https://doi.org/10.1016/j.catena.2014.10.027

    Article  Google Scholar 

  • Mutti, P. R., Lúcio, P. S., Dubreuil, V., & Bezerra, B. G. (2020). NDVI time series stochastic models for the forecast of vegetation dynamics over desertification hotspots. International Journal of Remote Sensing, 41, 2759–2788.

    Article  Google Scholar 

  • Pabot, H. (1967). Report to Government of Iran: Pasture development and range improvement through botanical and ecological studies. UNDP/FAO.

    Google Scholar 

  • Penner, J. F., & Frank, D. A. (2021). Density-dependent plant growth drives grazer stimulation of aboveground net primary production in Yellowstone grasslands. Oecologia, 196, 851–861. https://doi.org/10.1007/s00442-021-04960-5

    Article  Google Scholar 

  • Piwowar, J. M., & Ledrew, E. F. (2002). ARMA time series modelling of remote sensing imagery: A new approach for climate change studies. International Journal of Remote Sensing, 24, 5225–5248. https://doi.org/10.1080/01431160110109552

    Article  Google Scholar 

  • Qiu, S., Yang, H., Zhang, S., Huang, S., Zhao, S., Xu, X., He, P., Zhou, W., Zhao, Y., Yan, N., Nikolaidis, N., Christie, P., & Banwart, S. A. (2024). Carbon storage in an arable soil combining field measurements, aggregate turnover modeling and climate scenarios. CATENA, 220, 106708. https://doi.org/10.1016/j.catena.2022.106708

    Article  CAS  Google Scholar 

  • Said, O. M., & Kawamukai, H. (2021). Comparison between the Holt-Winters and SARIMA models in the prediction of NDVI in an arid region in Kenya using pixel-wise NDVI time series. Academic Journal of Research and Scientific Publishing, 2, 1–15.

    Article  Google Scholar 

  • Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice, I. C., & Woodward, F. I. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015–2039.

    Article  Google Scholar 

  • Sun, J., Yue, Y., & Niu, H. (2021). Evaluation of NPP using three models compared with MODIS NPP data over China. PLoS ONE, 16(11), e0252149. https://doi.org/10.1371/journal.pone.0252149

    Article  CAS  Google Scholar 

  • Tian, M., Wang, P., & Khan, J. (2016). Drought forecasting with vegetation temperature condition index using ARIMA models in the Guanzhong Plain. Remote Sensing, 8, 1–19. https://doi.org/10.3390/rs8090690

    Article  CAS  Google Scholar 

  • Van Leeuwen, W. J. D., Orr, B. J., Marsh, S. E., & Herrmann, S. M. (2006). Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications. Remote Sensing Environment, 100, 67–81.

    Article  Google Scholar 

  • Wang, Y., Quan, S., Tang, X., Hosono, T., Hao, Y., Tian, J., & Pang, Z. (2024). Organic and inorganic carbon sinks reduce long-term deep carbon emissions in the continental collision margin of the Southern Tibetan Plateau: Implications for Cenozoic climate cooling. Journal of Geophysical Research: Solid Earth, 129(4), e2024JB028802. https://doi.org/10.1029/2024JB028802

    Article  Google Scholar 

  • Xing, X., Xu, X., Zhang, X., & Zhu, c., Song, M., Shao, B., & Ouyang, H. (2010). Simulating net primary production of grasslands in northeastern Asia using MODIS data from 2000 to 2005. Journal of Geographical Sciences, 20, 193–204. https://doi.org/10.1007/s11442-010-0193-y

    Article  Google Scholar 

  • Zarei, A., Asadi, E., Ebrahimi, A., Jafari, M., Malekian, A., Mohammadi Nasrabadi, H., Chemura, A., & Maskell, G. (2020). Prediction of future grassland vegetation cover fluctuation under climate change scenarios. Ecological Indicators, 119, 106858.

    Article  Google Scholar 

  • Zhang, Y., Song, C., Band, L. E., Sun, G., & Li, J. (2017). Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote Sensing Environment, 191, 145–155.

    Article  Google Scholar 

  • Zhao, A., Zhang, A., Lu, C., Wang, D., Wang, H., & Liu, H. (2017). Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Program in Loess Plateau, China. Ecological Engineering, 104, 13–22.

    Article  Google Scholar 

  • Zoffoli, M. L., Kandus, P., Madanes, N., & Calvo, D. H. (2008). Seasonal and interannual analysis of wetlands in South America using NOAA-AVHRR NDVI time series: The case of the Parana Delta Region. Landscape Ecology, 23, 833–848.

    Article  Google Scholar 

  • Dawson, C. W., Robert, J. A., Linda, M. S. (2005). Hydrotest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts, Figshare. from https://hdl.handle.net/2134/2733.

  • Kirchgässner, G., Wolterrs, J., & Hassler. U. (2007). Introduction to modern time series analysis, Springer Berlin, Heidelberg, from https://doi.org/10.1007/978-3-642-33436-8.

  • Orr, B. J., Casady, G. M., Tuttle, D. G., Van Leeuwen, W. J. D., Baker, L. E., & McDonald, C. L. (2004) Phenology and trend indictors derived from spatially dynamic bi-weekly satellite imagery to support ecosystem monitoring. In: G. J. Gottfried, B. S. Gebow, L. G. Eskew, & B. Carleton (Eds), Connecting mountain islands and desert seas: biodiversity and management of the Madrean Archipelago. (Pp. 206–211). II. Proc. RMRS-P-36. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

  • Salaberria, A., García-Baquero, G., Odriozola, I., Aldezabal, A. (2019). Modelling aboveground net primary production (ANPP) of an Atlantic mountain grassland based on time series approach. Cuadernos de Investigación Geográfica, 45(2), 551–569. https://doi.org/10.18172/cig.356

  • Shang, K., Xu, L., Liu, X., Yin, Z., Liu, Z., Li, X.Yin, L, Zheng, W. (2023). Study of urban heat island effect in hangzhou metropolitan area based on SW-TES algorithm and image dichotomous model. SAGE Open, 13(4). https://doi.org/10.1177/21582440231208851

  • Shen, X., Bai, X., Zhao, C., Tan, Q., Luo, G., Li, C., Ran, C., Zhang, S., Xiong, L., Liao, J., Du, C., Li, Z., Xue, Y., Long, M.,Li, M., Luo, Q., Yang, S.,Zhang, X., Xie, Y. (2024). Global response of soil biodiversity to climate and land use changes. Journal of Cleaner Production, 143381. https://doi.org/10.1016/j.jclepro.2024.143381

  • Wei, W. W. S. (2013). Time series analysis, In: T. D. Little (Eds), The Oxford handbook of quantitative methods in psychology. (pp. 458–487). E-Publishing Inc. University of Pennsylvania, https://doi.org/10.1093/oxfordhb/9780199934898.013.0022.

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.S. and S.S. and R.M. conceptualize; F.S. Modeling, and write the manuscript; S.S. and R.M. provided editorial advice.

Corresponding author

Correspondence to Saied Soltani.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayedzadeh, F., Soltani, S. & Modarres, R. Modeling NPP and NDVI time series in different bioclimatic regions of Iran. Environ Monit Assess 196, 1146 (2024). https://doi.org/10.1007/s10661-024-13238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-13238-1

Keywords

Navigation