Abstract
In this work, MOF-74 catalysts with various Co/Ni ratios obtained by hydrothermal method were prepared, and the degradation performance of various catalysts with synergistic non-thermal plasma for toluene was investigated. The addition of catalysts to NTP shown notable effects in toluene degradation and energy usage efficiency when compared to NTP alone. Notably, CoxNiy-MOF outperformed Co-MOF and Ni-MOF in terms of toluene catalytic activity. In comparison to the single plasma condition, Co2Ni3-MOF showed the maximum toluene degradation rate of 78% at the NTP discharge power of 11.66 W. SEM, BET, XRD, XPS, and FTIR were used to examine the impact of various Co/Ni ratios on the structure and redox characteristics of the samples. The interaction of Co and Ni results in many flaws and oxygen vacancies, increasing the amount of oxygen adsorbed on the surface and the reducibility of the catalyst, which is thought to be the cause of the rise in catalytic activity. Finally, based on the discovered organic compounds, the process of toluene breakdown in the plasma co-catalytic system was deduced. This work provides a novel concept for improving catalysts for the non-thermal plasma-catalyzed decomposition of toluene.
Graphical Abstract
Similar content being viewed by others
References
Zhu LL, Shen DK, Luo KH (2020) J Hazard Mater 389:122102
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao ZP (2019) Chem Rev 119:4471–4568
Mu ML, Zhang XF, Yu GQ, Sun CY, Xu RN, Liu N, Wang N, Chen BH, Dai CN (2022) Sep Purif Technol 298:121610
Dong C, Yang JJ, Xie LH, Cui GL, Fang WH, Li JR (2022) Nat Commun 13:4991
Peng YB, Wei X, Wang YJ, Li WW, Zhang SX, Jin J (2022) ACS Nano 16:8329–8337
Li JH, Xiao GF, Guo ZY, Lin BL, Hu Y, Fu ML, Ye DQ (2021) Chem Eng J 419:129675
Dai L, Li XY, Zhang L, Ma PP, Guan J, Yu W (2022) Adv Compos Hybrid Mater 5:2285–2296
Yang ZH, Li J, Liu J, Cao JY, Sheng DH, Cai TJ (2019) J Environ Manag 246:71–76
Youn JS, Bae J, Park S, Park Y-K (2018) Catal Commun 113:36–40
Xiang QS, Fan LM, Li YF, Dong SS, Li K, Bai YH (2022) Crit Rev Food Sci Nutr 62:2250–2268
Chung WC, Mei DH, Tu X, Chang MB (2019) Catal Rev Sci Eng 61:270–331
Yao XM, Jiang N, Li J, Lu N, Shang KF, Wu Y (2019) Chem Eng J 362:339–348
Hossain MM, Mok YS, Nguyen VT, Sosiawati T, Lee B, Kim YJ, Lee JH, Heo I (2022) Chem Eng Res Des 177:406–417
Fan X, Zhu TL, Sun YF, Yan X (2011) J Hazard Mater 196:380–385
Wang JJ, Wang XX, AlQahtani MS, Knecht SD, Bilen SG, Chu W, Song CS (2023) Chem Eng J 451:138661
Kim HH, Teramoto Y, Negishi N, Ogata A (2015) Catal Today 256:13–22
Li G, Jiang X, Lei ZJ, Liu CX, Yang JH, Xu YJ, Xu G (2020) Sci Rep 10:13004
Chen CW, Kosari M, He C, Ma MD, Tian MJ, Jiang ZY, Albilali R (2022) ACS Appl Mater Interfaces 14:990–1001
Hossain MM, Mok YS, Nguyen DB, Kim SJ, Kim YJ, Lee JH, Heo I (2021) J Hazard Mater 404:123958
Qian YT, Zhang FF, Pang H (2021) Adv Funct Mater 31:2104231
Yan XY, Li PX, Song XM, Li JJ, Ren BH, Gao SY, Cao R (2021) Coord Chem Rev 443:214034
Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D, Ameloot R, Evans JD, Doonan CJ (2016) Coord Chem Rev 307:237–254
Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) J Energy Storage 21:632–646
Dhakshinamoorthy A, Asiri AM, Garcia H (2016) Angewandte Chemie-Int Ed 55:5414–5445
Stassen I, Styles M, Grenci G, Van Gorp H, Vanderlinden W, De Feyter S, Falcaro P, De Vos D, Vereecken P, Ameloot R (2016) Abstr Pap Am Chem Soc 251:5414–5415
Sun L, Campbell MG, Dinca M (2016) Angewandte Chemie-Int Ed 55:3566–3579
Chen BL, Xiang SC, Qian GD (2010) Acc Chem Res 43:1115–1124
Kitagawa S, Kitaura R, Noro S (2004) Angewandte Chemie-Int Ed 43:2334–2375
Stock N, Biswas S (2012) Chem Rev 112:933–969
Zhang XH, Dong PP, Lee JI, Gray JT, Cha YH, Ha S, Song MK (2019) Energy Storage Mater 17:167–177
Li JT, Xu ZL, Wang T, Xie XW, Li DD, Wang JE, Huang HB, Ao ZM (2022) Chem Eng J 448:136900
Li X, Wang SW, Zhang X, Mei DH, Xu YH, Yu P, Sun YJ (2022) J Clean Prod 332:130107
Guo SH, Qi XJ, Zhou HM, Zhou J, Wang XH, Dong M, Zhao X, Sun CY, Wang XL, Su ZM (2020) J Mater Chem A 8:11712–11718
Zhang XD, Bi FK, Zhu ZQ, Yang Y, Zhao SH, Chen JF, Lv XT, Wang YX, Xu JC, Liu N (2021) Appl Catal B-Environ 297:120393
Rong X, Cao Q, Gao Y, Luan T, Li YT, Man QY, Zhang ZC, Chen BM (2022) Molecules 27:7363
Yi B, Zhao H, Cao L, Si X, Jiang Y, Cheng P, Zuo Y, Zhang Y, Su L, Wang Y, Tsung CK, Chou LY, Xie J (2022) Materials Today Nano 17:100158
Liao L, Ding XG, Li J, Huang LL, Zhang MY, Fan YM, Zhou XB, Zhang YA, Mo SP, Xie QL, Ye DQ (2023) Sep Purif Technol 309:122939
Fu YH, Xu L, Shen HM, Yang H, Zhang FM, Zhu WD, Fan MH (2016) Chem Eng J 299:135–141
Zhou JJ, Ji WX, Xu L, Yang Y, Wang WQ, Ding HL, Xu XC, Wang WW, Zhang PL, Hua ZL, Chen LY (2022) Chem Eng J 428:132123
Wei J, Feng YY, Zhou PP, Liu Y, Xu JY, Xiang R, Ding Y, Zhao CC, Fan LY, Hu CW (2015) Chemsuschem 8:2630–2634
Yuan MW, Yao HQ, Xie LX, Liu XW, Wang H, Islam SM, Shi KR, Yu ZH, Sun GB, Li HF, Ma SL, Kanatzidis MG (2020) J Am Chem Soc 142:1574–1583
Shang YN, Xu X, Gao BY, Ren ZF (2017) Acs Sustain Chem Eng 5:8908–8917
Hao C, Guo YN, Ren WT, Wang XH, Zhu LL, Wang XK, Wu JB (2022) Electrochim Acta 412:140135
Jin XT, Li XL, Lei HT, Guo K, Lv B, Guo HB, Chen DD, Zhang W, Cao R (2021) J Energy Chem 63:659–666
Shi F, Wang ZS, Zhu KY, Zhu XF, Yang WS (2022) Electrochim Acta 416:140293
Lu YX, Guo JL, He ZK, Gao ZD, Song YY, Song YY (2022) Energy Storage Mater 48:487–496
Tian MJ, Guo X, Dong R, Guo Z, Shi JW, Yu YK, Cheng MX, Albilali R, He C (2019) Appl Catal B-Environ 259:118018
Sun ZH, Mi X, Luo YC, Wang SY, Yuan B, Hao RL, Zhao Y (2021) ACS Omega 6:34347–34358
Luo YJ, Zheng YB, Zuo JC, Feng XS, Wang XY, Zhang TH, Zhang K, Jiang LL (2018) J Hazard Mater 349:119–127
Yao X, Li YZ, Fan ZY, Zhang ZX, Chen MX, Shangguan WF (2018) Ind Eng Chem Res 57:4214–4224
Feng XB, Chen CW, He C, Chai SN, Yu YK, Cheng J (2020) J Hazard Mater 383:121143
Mustafa MF, Fu XD, Liu YJ, Abbas Y, Wang HT, Lu WJ (2018) J Hazard Mater 347:317–324
Lei XS, Wang JE, Wang T, Wang XJ, Xie XW, Huang HB, Li DD, Ao ZM (2023) J Hazard Mater 456:131671
Ji W, Qu GF, Zhou JH, Ning P, Li JY, Tang HM, Pan KH, Xie RS (2023) Sep Purif Technol 320:124185
Wen M, Dong F, Yao JF, Tang ZC, Zhang JY (2022) J Catal 412:42–58
Li SJ, Yu X, Dang XQ, Wang PY, Meng XK, Wang Q, Hou H (2022) J Clean Prod 340:130774
Acknowledgements
This study was supported by the National Key R&D project of China (No. 2018YFC1900203), the National Key R&D project of China (No. 2018YFC1801702),
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xu, Y., Li, Z., Qu, G. et al. Removal of Toluene by Non-thermal Plasma Combined with CoxNiy-MOF-74 Catalyst. Catal Lett 154, 2891–2902 (2024). https://doi.org/10.1007/s10562-023-04484-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10562-023-04484-y