[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Removal of Toluene by Non-thermal Plasma Combined with CoxNiy-MOF-74 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, MOF-74 catalysts with various Co/Ni ratios obtained by hydrothermal method were prepared, and the degradation performance of various catalysts with synergistic non-thermal plasma for toluene was investigated. The addition of catalysts to NTP shown notable effects in toluene degradation and energy usage efficiency when compared to NTP alone. Notably, CoxNiy-MOF outperformed Co-MOF and Ni-MOF in terms of toluene catalytic activity. In comparison to the single plasma condition, Co2Ni3-MOF showed the maximum toluene degradation rate of 78% at the NTP discharge power of 11.66 W. SEM, BET, XRD, XPS, and FTIR were used to examine the impact of various Co/Ni ratios on the structure and redox characteristics of the samples. The interaction of Co and Ni results in many flaws and oxygen vacancies, increasing the amount of oxygen adsorbed on the surface and the reducibility of the catalyst, which is thought to be the cause of the rise in catalytic activity. Finally, based on the discovered organic compounds, the process of toluene breakdown in the plasma co-catalytic system was deduced. This work provides a novel concept for improving catalysts for the non-thermal plasma-catalyzed decomposition of toluene.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu LL, Shen DK, Luo KH (2020) J Hazard Mater 389:122102

    Article  CAS  PubMed  Google Scholar 

  2. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao ZP (2019) Chem Rev 119:4471–4568

    Article  CAS  PubMed  Google Scholar 

  3. Mu ML, Zhang XF, Yu GQ, Sun CY, Xu RN, Liu N, Wang N, Chen BH, Dai CN (2022) Sep Purif Technol 298:121610

    Article  CAS  Google Scholar 

  4. Dong C, Yang JJ, Xie LH, Cui GL, Fang WH, Li JR (2022) Nat Commun 13:4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng YB, Wei X, Wang YJ, Li WW, Zhang SX, Jin J (2022) ACS Nano 16:8329–8337

    Article  CAS  PubMed  Google Scholar 

  6. Li JH, Xiao GF, Guo ZY, Lin BL, Hu Y, Fu ML, Ye DQ (2021) Chem Eng J 419:129675

    Article  CAS  Google Scholar 

  7. Dai L, Li XY, Zhang L, Ma PP, Guan J, Yu W (2022) Adv Compos Hybrid Mater 5:2285–2296

    Article  CAS  Google Scholar 

  8. Yang ZH, Li J, Liu J, Cao JY, Sheng DH, Cai TJ (2019) J Environ Manag 246:71–76

    Article  CAS  Google Scholar 

  9. Youn JS, Bae J, Park S, Park Y-K (2018) Catal Commun 113:36–40

    Article  CAS  Google Scholar 

  10. Xiang QS, Fan LM, Li YF, Dong SS, Li K, Bai YH (2022) Crit Rev Food Sci Nutr 62:2250–2268

    Article  CAS  PubMed  Google Scholar 

  11. Chung WC, Mei DH, Tu X, Chang MB (2019) Catal Rev Sci Eng 61:270–331

    Article  CAS  Google Scholar 

  12. Yao XM, Jiang N, Li J, Lu N, Shang KF, Wu Y (2019) Chem Eng J 362:339–348

    Article  CAS  Google Scholar 

  13. Hossain MM, Mok YS, Nguyen VT, Sosiawati T, Lee B, Kim YJ, Lee JH, Heo I (2022) Chem Eng Res Des 177:406–417

    Article  CAS  Google Scholar 

  14. Fan X, Zhu TL, Sun YF, Yan X (2011) J Hazard Mater 196:380–385

    Article  CAS  PubMed  Google Scholar 

  15. Wang JJ, Wang XX, AlQahtani MS, Knecht SD, Bilen SG, Chu W, Song CS (2023) Chem Eng J 451:138661

    Article  CAS  Google Scholar 

  16. Kim HH, Teramoto Y, Negishi N, Ogata A (2015) Catal Today 256:13–22

    Article  CAS  Google Scholar 

  17. Li G, Jiang X, Lei ZJ, Liu CX, Yang JH, Xu YJ, Xu G (2020) Sci Rep 10:13004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen CW, Kosari M, He C, Ma MD, Tian MJ, Jiang ZY, Albilali R (2022) ACS Appl Mater Interfaces 14:990–1001

    Article  CAS  PubMed  Google Scholar 

  19. Hossain MM, Mok YS, Nguyen DB, Kim SJ, Kim YJ, Lee JH, Heo I (2021) J Hazard Mater 404:123958

    Article  CAS  PubMed  Google Scholar 

  20. Qian YT, Zhang FF, Pang H (2021) Adv Funct Mater 31:2104231

    Article  CAS  Google Scholar 

  21. Yan XY, Li PX, Song XM, Li JJ, Ren BH, Gao SY, Cao R (2021) Coord Chem Rev 443:214034

    Article  CAS  Google Scholar 

  22. Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D, Ameloot R, Evans JD, Doonan CJ (2016) Coord Chem Rev 307:237–254

    Article  CAS  Google Scholar 

  23. Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) J Energy Storage 21:632–646

    Article  Google Scholar 

  24. Dhakshinamoorthy A, Asiri AM, Garcia H (2016) Angewandte Chemie-Int Ed 55:5414–5445

    Article  CAS  Google Scholar 

  25. Stassen I, Styles M, Grenci G, Van Gorp H, Vanderlinden W, De Feyter S, Falcaro P, De Vos D, Vereecken P, Ameloot R (2016) Abstr Pap Am Chem Soc 251:5414–5415

    Google Scholar 

  26. Sun L, Campbell MG, Dinca M (2016) Angewandte Chemie-Int Ed 55:3566–3579

    Article  CAS  Google Scholar 

  27. Chen BL, Xiang SC, Qian GD (2010) Acc Chem Res 43:1115–1124

    Article  CAS  PubMed  Google Scholar 

  28. Kitagawa S, Kitaura R, Noro S (2004) Angewandte Chemie-Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  29. Stock N, Biswas S (2012) Chem Rev 112:933–969

    Article  CAS  PubMed  Google Scholar 

  30. Zhang XH, Dong PP, Lee JI, Gray JT, Cha YH, Ha S, Song MK (2019) Energy Storage Mater 17:167–177

    Article  CAS  Google Scholar 

  31. Li JT, Xu ZL, Wang T, Xie XW, Li DD, Wang JE, Huang HB, Ao ZM (2022) Chem Eng J 448:136900

    Article  CAS  Google Scholar 

  32. Li X, Wang SW, Zhang X, Mei DH, Xu YH, Yu P, Sun YJ (2022) J Clean Prod 332:130107

    Article  CAS  Google Scholar 

  33. Guo SH, Qi XJ, Zhou HM, Zhou J, Wang XH, Dong M, Zhao X, Sun CY, Wang XL, Su ZM (2020) J Mater Chem A 8:11712–11718

    Article  CAS  Google Scholar 

  34. Zhang XD, Bi FK, Zhu ZQ, Yang Y, Zhao SH, Chen JF, Lv XT, Wang YX, Xu JC, Liu N (2021) Appl Catal B-Environ 297:120393

    Article  CAS  Google Scholar 

  35. Rong X, Cao Q, Gao Y, Luan T, Li YT, Man QY, Zhang ZC, Chen BM (2022) Molecules 27:7363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yi B, Zhao H, Cao L, Si X, Jiang Y, Cheng P, Zuo Y, Zhang Y, Su L, Wang Y, Tsung CK, Chou LY, Xie J (2022) Materials Today Nano 17:100158

    Article  CAS  Google Scholar 

  37. Liao L, Ding XG, Li J, Huang LL, Zhang MY, Fan YM, Zhou XB, Zhang YA, Mo SP, Xie QL, Ye DQ (2023) Sep Purif Technol 309:122939

    Article  CAS  Google Scholar 

  38. Fu YH, Xu L, Shen HM, Yang H, Zhang FM, Zhu WD, Fan MH (2016) Chem Eng J 299:135–141

    Article  CAS  Google Scholar 

  39. Zhou JJ, Ji WX, Xu L, Yang Y, Wang WQ, Ding HL, Xu XC, Wang WW, Zhang PL, Hua ZL, Chen LY (2022) Chem Eng J 428:132123

    Article  CAS  Google Scholar 

  40. Wei J, Feng YY, Zhou PP, Liu Y, Xu JY, Xiang R, Ding Y, Zhao CC, Fan LY, Hu CW (2015) Chemsuschem 8:2630–2634

    Article  CAS  PubMed  Google Scholar 

  41. Yuan MW, Yao HQ, Xie LX, Liu XW, Wang H, Islam SM, Shi KR, Yu ZH, Sun GB, Li HF, Ma SL, Kanatzidis MG (2020) J Am Chem Soc 142:1574–1583

    Article  CAS  PubMed  Google Scholar 

  42. Shang YN, Xu X, Gao BY, Ren ZF (2017) Acs Sustain Chem Eng 5:8908–8917

    Article  CAS  Google Scholar 

  43. Hao C, Guo YN, Ren WT, Wang XH, Zhu LL, Wang XK, Wu JB (2022) Electrochim Acta 412:140135

    Article  CAS  Google Scholar 

  44. Jin XT, Li XL, Lei HT, Guo K, Lv B, Guo HB, Chen DD, Zhang W, Cao R (2021) J Energy Chem 63:659–666

    Article  CAS  Google Scholar 

  45. Shi F, Wang ZS, Zhu KY, Zhu XF, Yang WS (2022) Electrochim Acta 416:140293

    Article  CAS  Google Scholar 

  46. Lu YX, Guo JL, He ZK, Gao ZD, Song YY, Song YY (2022) Energy Storage Mater 48:487–496

    Article  Google Scholar 

  47. Tian MJ, Guo X, Dong R, Guo Z, Shi JW, Yu YK, Cheng MX, Albilali R, He C (2019) Appl Catal B-Environ 259:118018

    Article  CAS  Google Scholar 

  48. Sun ZH, Mi X, Luo YC, Wang SY, Yuan B, Hao RL, Zhao Y (2021) ACS Omega 6:34347–34358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Luo YJ, Zheng YB, Zuo JC, Feng XS, Wang XY, Zhang TH, Zhang K, Jiang LL (2018) J Hazard Mater 349:119–127

    Article  CAS  PubMed  Google Scholar 

  50. Yao X, Li YZ, Fan ZY, Zhang ZX, Chen MX, Shangguan WF (2018) Ind Eng Chem Res 57:4214–4224

    Article  CAS  Google Scholar 

  51. Feng XB, Chen CW, He C, Chai SN, Yu YK, Cheng J (2020) J Hazard Mater 383:121143

    Article  CAS  PubMed  Google Scholar 

  52. Mustafa MF, Fu XD, Liu YJ, Abbas Y, Wang HT, Lu WJ (2018) J Hazard Mater 347:317–324

    Article  CAS  PubMed  Google Scholar 

  53. Lei XS, Wang JE, Wang T, Wang XJ, Xie XW, Huang HB, Li DD, Ao ZM (2023) J Hazard Mater 456:131671

    Article  Google Scholar 

  54. Ji W, Qu GF, Zhou JH, Ning P, Li JY, Tang HM, Pan KH, Xie RS (2023) Sep Purif Technol 320:124185

    Article  CAS  Google Scholar 

  55. Wen M, Dong F, Yao JF, Tang ZC, Zhang JY (2022) J Catal 412:42–58

    Article  CAS  Google Scholar 

  56. Li SJ, Yu X, Dang XQ, Wang PY, Meng XK, Wang Q, Hou H (2022) J Clean Prod 340:130774

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D project of China (No. 2018YFC1900203), the National Key R&D project of China (No. 2018YFC1801702),

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Ning.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, Z., Qu, G. et al. Removal of Toluene by Non-thermal Plasma Combined with CoxNiy-MOF-74 Catalyst. Catal Lett 154, 2891–2902 (2024). https://doi.org/10.1007/s10562-023-04484-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04484-y

Keywords

Navigation