[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Investigation of Turbulence Behaviour in the Stable Boundary Layer Using Arbitrary-Order Hilbert Spectra

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The CASES-99 experimental data are used to analyze turbulence behaviour under a range of stable conditions using an adaptive method based on Hilbert spectral analysis. The characteristic scales of intrinsic mode functions vary between different stratifications. The second-order Hilbert marginal spectra display clear separation between fine-scale turbulence and large-scale motions. After removing the large-scale motions, the statistical characteristics of the reconstructed signals confirm the distinction of different stratifications in the fine-scale range. The correlation coefficient analyses reveal that the Hilbert spectral analysis method separates turbulence from large-scale motions in the stable boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For further details regarding CASES-99, refer to the Internet site at http://www.colorado-research.com/cases/CASES-99.html.

References

  • Basu S, Porté-Agel F, Foufoula-Georgiou E, Vinuesa J-F, Pahlow M (2006) Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: an integration of field and laboratory measurements with large-eddy simulations. Boundary-Layer Meteorol 119:473–500

    Article  Google Scholar 

  • Businger JA (1973) Turbulent transfer in the atmospheric surface layer. In: Haugen DA (ed) Workshop on micrometeorology. American Meteorological Society, Boston, pp 67–100

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Calif R, Schmitt FG (2014) Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm. Nonlin Process Geophys 21:379–392

    Article  Google Scholar 

  • Cohen L (1995) Time-frequency analysis. Prentice Hall, New Jersey, pp 153–161

    Google Scholar 

  • De Bruin HAR (1994) Analytic solutions of the equations governing the temperature fluctuation method. Boundary-Layer Meteorol 68(4):427–432

    Article  Google Scholar 

  • Derbyshire SH (1990) Nieuwstadt’s stable boundary layer revisited. Q J R Meteorol Soc 116:127–158

    Article  Google Scholar 

  • Dyer A, Bradley EF (1982) An alternative analysis of flux-gradient relationships at the 1976 ITCE. Boundary-Layer Meteorol 22:3–19

    Article  Google Scholar 

  • Einaudi F, Finnigan J (1981) The interaction between an internal gravity wave and the planetary boundary layer. Part I: the linear analysis. Q J R Meteorol Soc 107:793–806

    Article  Google Scholar 

  • Flandrin P, Gonçalvés P (2004) Empirical mode decompositions as data-driven wavelet-like expansions. Int J Wavelets Multiresolut Inf Process 2:477–496

    Article  Google Scholar 

  • Flandrin P, Rilling G, Gonçalvés P (2004) Empirical mode decomposition as a filter bank. IEEE Signal Process Lett 11:112–114

    Article  Google Scholar 

  • Frisch U (1995) Turbulence: the legacy of AN Kolmogorov. Cambridge University Press, Cambridge, pp 72–97

    Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116:201–235

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2008) Turbulent measurements in the stable atmospheric boundary layer during SHEBA: ten years after. Acta Geophys 56:142–166

    Article  Google Scholar 

  • Holtslag A, Svensson G, Baas P, Basu S, Beare B, Beljaars A, Bosveld F, Cuxart J, Lindvall J, Steeneveld G (2013) Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull Am Meteorol Soc 94:1691–1706

    Article  Google Scholar 

  • Hong J, Kim J, Ishikawa H, Ma Y (2010) Surface layer similarity in the nocturnal boundary layer: the application of Hilbert–Huang transform. Biogeosciences 7:1271–1278

    Article  Google Scholar 

  • Hu XM, Klein PM, Xue M (2013) Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J Geophys Res Atmos 118:10490–10505

  • Huang NE, Long SR, Shen Z (1996) The mechanism for frequency downshift in nonlinear wave evolution. Adv Appl Mech 32:59–117C

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc 454:903–995

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum 1. Annu Rev Fluid Mech 31:417–457

    Article  Google Scholar 

  • Huang NE, Wu M-LC, Long SR, Shen SS, Qu W, Gloersen P, Fan KL (2003) A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc 459:2317–2345

    Article  Google Scholar 

  • Huang Y, Schmitt FG, Lu Z, Liu Y (2008) An amplitude-frequency study of turbulent scaling intermittency using empirical mode decomposition and Hilbert spectral analysis. Europhys Lett 84:40010

    Article  Google Scholar 

  • Huang Y, Schmitt FG, Hermand J-P, Gagne Y, Lu Z, Liu Y (2011) Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: comparison study with detrended fluctuation analysis and wavelet leaders. Phys Rev E 84:016208

    Article  Google Scholar 

  • Huang Y, Biferale L, Calzavarini E, Sun C, Toschi F (2013) Lagrangian single-particle turbulent statistics through the Hilbert–Huang transform. Phys Rev E 87:041003

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, pp 16–20

    Google Scholar 

  • Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. Akademiia Nauk SSSR Doklady 32:16–18

    Google Scholar 

  • Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (2013) The weather and climate: emergent laws and multifractal cascades. Cambridge University Press, Cambridge, pp 192–193

    Book  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375–396

    Article  Google Scholar 

  • Mahrt L (2011) The near-calm stable boundary layer. Boundary-Layer Meteorol 140:343–360

    Article  Google Scholar 

  • Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45

    Article  Google Scholar 

  • Mahrt L, Vickers D (2002) Contrasting vertical structures of nocturnal boundary layers. Boundary-Layer Meteorol 105:351–363

    Article  Google Scholar 

  • Mahrt L, Richardson S, Seaman N, Stauffer D (2012) Turbulence in the nocturnal boundary layer with light and variable winds. Q J R Meteorol Soc 138:1430–1439

    Article  Google Scholar 

  • Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151:163–187

    Google Scholar 

  • Muschinski A, Roth R (1993) A local interpretation of Heisenberg’s transfer theory. Contr Atmos Phys 66:335–346

    Google Scholar 

  • Muschinski A, Frehlich RG, Balsley BB (2004) Small-scale and large-scale intermittency in the nocturnal boundary layer and the residual layer. J Fluid Mech 515:319–351

    Article  Google Scholar 

  • Obukhov A (1962) Some specific features of atmospheric turbulence. J Geophys Res 67:3011–3014

    Article  Google Scholar 

  • Ohya Y, Neff DE, Meroney RN (1997) Turbulence structure in a stratified boundary layer under stable conditions. Boundary-Layer Meteorol 83:139–162

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83:555

    Article  Google Scholar 

  • Rilling G, Flandrin P, Gonçalvés P (2003) On empirical mode decomposition and its algorithms. IEEE-EURASIP Workshop Nonlinear Signal Image Process 3:8–11

    Google Scholar 

  • Rodriguez A, Sanchez-Arcilla A, Redondo J, Bahia E, Sierra J (1995) Pollutant dispersion in the nearshore region: modelling and measurements. Water Sci Technol 32:169–178

    Article  Google Scholar 

  • Schertzer D, Lovejoy S (1993) Multifractal Generation of Self-Organized Criticality. Fract Natural Appl Sci A 41:325–339

  • Schmitt FG, Huang Y (2016) Stochastic analysis of scaling time series: from turbulence theory to applications. Cambridge University Press, Cambridge

  • Schmitt FG, Huang Y, Lu Z, Liu Y, Fernandez N (2009) Analysis of velocity fluctuations and their intermittency properties in the surf zone using empirical mode decomposition. J Mar Syst 77:473–481

    Article  Google Scholar 

  • Sorbjan Z (2010) Gradient-based scales and similarity laws in the stable boundary layer. Q J R Meteorol Soc 136:1243–1254

    Google Scholar 

  • Sorriso-Valvo L, Carbone V, Veltri P, Politano H, Pouquet A (2000) Non-Gaussian probability distribution functions in two-dimensional magnetohydrodynamic turbulence. Europhys Lett 51:520

    Article  Google Scholar 

  • Steeneveld G, Van de Wiel B, Holtslag A (2006) Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J Atmos Sci 63:920–935

    Article  Google Scholar 

  • Sterk H, Steeneveld G, Holtslag A (2013) The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice. J Geophys Res Atmos 118:1199–1217

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

  • Terradellas E, Soler M, Ferreres E, Bravo M (2005) Analysis of oscillations in the stable atmospheric boundary layer using wavelet methods. Boundary-Layer Meteorol 114:489–518

    Article  Google Scholar 

  • Tong C, Nguyen KX (2015) Multipoint Monin–Obukhov similarity and its application to turbulence spectra in the convective atmospheric surface layer. J Atmos Sci 72:4337–4348

    Article  Google Scholar 

  • Van de Wiel B, Moene A, Ronda R, De Bruin H, Holtslag A (2002a) Intermittent turbulence and oscillations in the stable boundary layer over land. Part II: a system dynamics approach. J Atmos Sci 59:2567–2581

    Article  Google Scholar 

  • Van de Wiel B, Ronda R, Moene A, De Bruin H, Holtslag A (2002b) Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: a bulk model. J Atmos Sci 59:942–958

    Article  Google Scholar 

  • Van de Wiel B, Moene A, Hartogensis O, De Bruin H, Holtslag A (2003) Intermittent turbulence in the stable boundary layer over land. Part III: a classification for observations during CASES-99. J Atmos Sci 60:2509–2522

    Article  Google Scholar 

  • Vercauteren N, Klein R (2015) A clustering method to characterize intermittent bursts of turbulence and interaction with submesomotions in the stable boundary layer. J Atmos Sci 72(4):1504–1517

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20:660–672

    Article  Google Scholar 

  • Vindel J, Yagüe C, Redondo J (2008) Structure function analysis and intermittency in the atmospheric boundary layer. Nonlin Process Geophys 15:915–929

    Article  Google Scholar 

  • Walters JT, McNider RT, Shi X, Norris WB, Christy JR (2007) Positive surface temperature feedback in the stable nocturnal boundary layer. Geophys Res Lett 34:L12709

    Article  Google Scholar 

  • Wei W, Schmitt F, Huang Y, Zhang H (2016) The analyses of turbulence characteristics in the atmospheric surface layer using arbitrary-order Hilbert spectra. Boundary-Layer Meteorol 159:391–406

    Article  Google Scholar 

  • Willis G, Deardorff J (1976) On the use of Taylor’s translation hypothesis for diffusion in the mixed layer. Q J R Meteorol Soc 102:817–822

    Article  Google Scholar 

  • Wu Z, Huang NE (2004) A study of the characteristics of white noise using the empirical mode decomposition method. Proc R Soc 460:1597–1611

    Article  Google Scholar 

  • Wyngaard J, Coté O (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28:190–201

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly funded by grant from National Key Project of MOST (2016YFC0203300), R&D Special Fund for Public Welfare Industry (meteorology) by Ministry of Finance and Ministry of Science and Technology (GYHY201506001), the National Natural Science Foundation of China (91544216, 41475007, 11332006) and the Fundamental Research Funds for the Central Universities (Grant No. 20720150075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Zhang, H.S., Schmitt, F.G. et al. Investigation of Turbulence Behaviour in the Stable Boundary Layer Using Arbitrary-Order Hilbert Spectra. Boundary-Layer Meteorol 163, 311–326 (2017). https://doi.org/10.1007/s10546-016-0227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0227-9

Keywords

Navigation