[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Nielson interpolation operators on an arbitrary triangle with one curved side

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We extend some Nielson type interpolation operators to the cases of standard and arbitrary triangles with one curved side. The correspondence between the operators defined on standard triangles and arbitrary triangles is made using barycentric coordinates. We study the interpolation properties of the obtained operators and the interpolation errors. For illustration, we give some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnhill, R.E., Birkhoff, G., Gordon, W.J.: Smooth interpolation in triangles. J. Approx. Theory 8, 114–128 (1973)

    Article  MathSciNet  Google Scholar 

  2. Barnhill, R.E.: Blending function interpolation: a survey and some new results. In: Collatz, L., et al. (eds.) Numerishe Methoden der Approximationstheorie, vol. 30, pp. 43–89. Birkhauser-Verlag, Basel (1976)

    Chapter  Google Scholar 

  3. Barnhill, R.E.: Representation and approximation of surfaces. In: Rice, J.R. (ed.) Mathematical Software III, pp. 68–119. Academic Press, New-York (1977)

    Google Scholar 

  4. Barnhill, R.E., Gregory, J.A.: Sard kernels theorems on triangular domains with applications to finite element error bounds. Numer. Math. 25, 215–229 (1976)

    Article  MathSciNet  Google Scholar 

  5. Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26(5), 1212–1240 (1989)

    Article  MathSciNet  Google Scholar 

  6. Blaga, P., Cătinaş, T., Coman, G.: Bernstein-type operators on tetrahedrons, Studia Univ. Babes-Bolyai, Mathematica 54(4), 3–19 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Blaga, P., Cătinaş, T., Coman, Gh: Bernstein-type operators on a square with one and two curved sides, Studia Univ. Babes-Bolyai, Mathematica 55(3), 51–67 (2010)

    MATH  Google Scholar 

  8. Blaga, P., Cătinaş, T., Coman, G.: Bernstein-type operators on triangle with all curved sides. Appl. Math. Comput. 218, 3072–3082 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Blaga, P., Cătinaş, T., Coman, G.: Bernstein-type operators on triangle with one curved side. Mediterr. J. Math. 9(4), 843–855 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cătinaş, T.: Some classes of surfaces generated by Nielson and Marshall type operators on the triangle with one curved side. Stud. Univ. Babes-Bolyai Math. 61(3), 305–314 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Cătinaş, T.: Extension of some generalized Hermite-type interpolation operators to the triangle with one curved side. Numer. Funct. Anal. Optim. 40(16), 1939–1963 (2019)

    Article  MathSciNet  Google Scholar 

  12. Cătinaş, T.: Extension of some particular interpolation operators to a triangle with one curved side. Appl. Math. Comput. 315, 286–297 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Cătinaş, T., Blaga, P., Coman, G.: Surfaces generation by blending interpolation on a triangle with one curved side. Results Math. 64(3–4), 343–355 (2013)

    Article  MathSciNet  Google Scholar 

  14. Coman, G., Cătinaş, T.: Interpolation operators on a tetrahedron with three curved sides. Calcolo 47(2), 113–128 (2010)

    Article  MathSciNet  Google Scholar 

  15. Coman, G., Cătinaş, T.: Interpolation operators on a triangle with one curved side. BIT Numer. Math. 50(2), 243–267 (2010)

    Article  MathSciNet  Google Scholar 

  16. Coman, G., Gânscă, I.: Blending approximation with applications in constructions. Bul. Şt. Inst. Politehnic Cluj-Napoca 24, 35–40 (1981)

    MATH  Google Scholar 

  17. Coman, G., Gânscă, I.: Some practical application of blending approximation II, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca (1986)

  18. Coman, G., Gânscă, I., Ţâmbulea, L.: Some new roof-surfaces generated by blending interpolation technique. Studia Univ. “Babeş-Bolyai”, Mathematica 36(1), 119–130 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Floater, M.S., Schulz, C.: Pointwise radial minimization: Hermite interpolation on arbitrary domains, In: Eurographics Symposium on Geometry Processing, Alliez, P., Rusinkiewicz S., (Eds.), 27(5), (2008)

  20. Gordon, W.J., Hall, Ch.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 109–129 (1973)

    Article  MathSciNet  Google Scholar 

  21. Gordon, W.J., Wixom, J.A.: Pseudo-harmonic interpolation on convex domains. SIAM J. Numer. Anal. 11(5), 909–933 (1974)

    Article  MathSciNet  Google Scholar 

  22. Gregory, J.A.: A blending function interpolant for triangles. In: Handscomb, D.C. (ed.) Multivariate Approximation, pp. 279–287. Academic Press, London (1978)

    Google Scholar 

  23. Liu, B., Liu, C., Lu, S., Wua, Y., Xinga, Y., Ferreira, A.J.M.: A differential quadrature hierarchical finite element method using Fekete points for triangles and tetrahedrons and its applications to structural vibration. Comput. Methods Appl. Mech. Eng. 349, 798–838 (2019)

    Article  MathSciNet  Google Scholar 

  24. Marshall, J.A., McLeod, R.: Curved elements in the finite element method. In: Conference on Numerical Solution Differential Equation, Lectures Notes in Mathematics, 363, Springer Verlag, pp. 89-104 (1974)

  25. Marshall, J.A., Mitchell, A.R.: Blending interpolants in the finite element method. Inter. J. Numer. Methods Eng. 12, 77–83 (1978)

    Article  MathSciNet  Google Scholar 

  26. Nielson, G.M.: Minimum norm interpolation in triangles. SIAM J. Numer. Anal. 17(1), 44–62 (1980)

    Article  MathSciNet  Google Scholar 

  27. Renka, R.J., Cline, A.K.: A triangle-based \(C^{1}\) interpolation method. Rocky Mt. J. Math. 14, 223–237 (1984)

    Article  Google Scholar 

  28. Sard, A.: Linear Approximation. AMS, Providence, RI (1963)

    Book  Google Scholar 

  29. Zlamal, M.: Curved elements in the finite element method. SIAM J. Numer. Anal. 10(1), 229–240 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for careful reading of the manuscript and for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodora Cătinaş.

Additional information

Communicated by Tom Lyche.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cătinaş, T. Nielson interpolation operators on an arbitrary triangle with one curved side. Bit Numer Math 61, 757–770 (2021). https://doi.org/10.1007/s10543-021-00842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00842-7

Keywords

Mathematics Subject Classification

Navigation