[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Hierarchical linear and nonlinear adaptive learning model for system identification and prediction

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we propose a method to increase the model accuracy with linear and nonlinear sub-models. The linear sub-model applies the least square error (LSE) algorithm and the nonlinear sub-model uses neural networks (NN). The two sub-models are updated hierarchically using the Lyapunov function. The proposed method has two advantages: 1) The neural networks is a multi-parametric model. Using the proposed model, the weights of NN model can be summarized into the coefficients or parameters of auto-regressive eXogenous/auto-regressive moving average (ARX/ARMA) model structure, making it easier to establish control laws, 2) learning rate is updated to ensure the convergence of errors at each training epoch. One can improve the accuracy of model and the whole control system. We have demonstrated by the experimental studies that the proposed technique gives better results when compared to the existing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Algreer M, Armstrong M, Giaouris D (2012) Active online system identification of switch mode DC DC power converter based on efficient recursive DCD-IIR adaptive filter. IEEE Trans Power Elect 27(11):4425–4435

    Article  Google Scholar 

  2. Barreto G A, Souza L G M (2016) Novel approaches for parameter estimation of local linear models for dynamical system identification. Appl Intell 44(1):149–165

    Article  Google Scholar 

  3. Benaouda D, Murtagh F, Starckc J L, Renaudd O (2006) Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting. IEEE Trans Neural Netw 70:139– 154

    Google Scholar 

  4. Cardona D A B, Nedjah N, Mourellea L M (2017) Online phoneme recognition using multi-layer perceptron networks combined with recurrent non-linear autoregressive neural networks with exogenous inputs. Neurocomputing 265:78–90

    Article  Google Scholar 

  5. Chatterjee S, Nigam S, Singh J B, Upadhyaya L N (2012) Software fault prediction using nonlinear autoregressive with exogenous inputs (narx) network. Appl Intell 37(1):121–129

    Article  Google Scholar 

  6. Chen J, Fang J, Liu W, Tang T, Yang C (2018) clmf: A fine-grained and portable alternating least squares algorithm for parallel matrix factorization. Future Generation Computer Systems

  7. Cheng Y, Wang L, Hu J (2012) Identification of Quasi-ARX neurofuzzy model with an SVR and GA approach. IEICE Trans Fundamentals E.95-A(5):876–883

    Article  Google Scholar 

  8. Feng C B, Zheng W X (1991) Robust identification of stochastic linear systems with correlated noise. IEE Procedings-D 138(5):484–492

    Article  Google Scholar 

  9. Fogel E (1981) A fundamental approach to the convergence analysis of least squares algorithms. IEEE Trans Auto Control AC-26(3):646–655

    Article  MathSciNet  Google Scholar 

  10. Hu J, Kumamaru K, Hirasawa K (2001) A Quasi-ARMAX approach to modelling of non-linear systems. Int J Control 74(18):1754–1766

    Article  MathSciNet  Google Scholar 

  11. Jami’in M, Sutrisno I, Hu J (2015) Maximum power tracking control for a wind energy conversion system based on a Quasi-ARX neural network model. IEEJ Trans Elect Electron Eng 10(4):368–375

    Article  Google Scholar 

  12. Jami’in MA, Sutrisno I, Hu J (2012) Lyapunov learning algorithm for quasi-ARX neural network to identification of nonlinear dynamical system. In: Proceedings of IEEE international conference on systems, man, and cybernetics (Seoul), pp 3141–3146

  13. Jami’in MA, Sutrisno I, Hu J, Mariun NB, Marhaban MH (2016) Quasi-arx neural network based adaptive predictive control for nonlinear systems. IEEJ Trans Elect Electron Eng 11(1):83–90

    Article  Google Scholar 

  14. Jami’in MA, Yuyun JE (2017) Hierarchical algorithms of quasi-linear arx neural networks for identification of nonlinear systems. Eng Lett 25(3):321–328

    Google Scholar 

  15. Jiang J, Doraiswami R (1987) Convergence analysis of least-squares identification algorithm for unstable systems. IEE Proceedings 134(5):301–308

    Article  MathSciNet  Google Scholar 

  16. Jonas S, Zhang Q, Ljung L, Benveniste A, Delyon B, Glorennec P Y, Hjalmarsson H, Juditsky A (1995) Nonlinear black-box modeling in system identification: a unified overview. Automatica 31(12):1691–1724

    Article  MathSciNet  Google Scholar 

  17. Kamal E, Aitouche A, Ghorbani R, Bayart M (2012) Robust fuzzy fault-tolerant control of wind energy conversion systems subject to sensor faults. IEEE Trans Sust Energy 3(2):231–241

    Article  Google Scholar 

  18. Liu X, Wang J, Zheng W (2011) Convergence analysis of refined instrumental variable method for continuous-time system identification. IET Control Theory Appl 5(7):868–877

    Article  MathSciNet  Google Scholar 

  19. Ljung L (1977) On positive real transfer functions and the convergence of some recursive schemes. IEEE Trans Automatic Control AC-22(4):539–551

    Article  MathSciNet  Google Scholar 

  20. McElveen J K, Lee K R, Bennett J E (1992) Identification of multivariable linear systems from input/output measurements. IEEE Trans Ind Electr 39(3):189–193

    Article  Google Scholar 

  21. Muhando E, Senjyu T, Yona A, Kinjo H, Funabashi T (2007) Disturbance rejection by dual pitch control and self-tuning regulator for wind turbine generator parametric uncertainty compensation. IET Control Theory Appl 1:1431–1440

    Article  Google Scholar 

  22. Nassiri-Toussi K, Ren W (1994) On the convergence of least squares estimates in white noise. IEEE Trans Automatic Control 39(2):364–368

    Article  MathSciNet  Google Scholar 

  23. Peng H, Wu J, Inoussa G, Deng Q, Nakano K (2009) Nonlinear system modeling and predictive control using the rbf nets-based quasi-linear arx model. Control Eng Pract 17:59– 66

    Article  Google Scholar 

  24. Purwanto EC, Logeswaran R (2012) An enhanced hybrid method for time series prediction using linear and neural network models. Appl Intell 37(4):511–519

    Article  Google Scholar 

  25. Rao A K, fang Huang Y, Dasgupta S (1990) ARMA parameter estimation using a novel recursive estimation algorithm with selective updating. IEEE Trans Acoustic Speech, Signal Process 38(3):447–457

    Article  MathSciNet  Google Scholar 

  26. Soliman M, Malik O, Westwick D (2011) Multiple model multiple-input multiple-output predictive control for variable speed variable pitch wind energy conversion systems. IET Renew Power Gener 5(2):124–136

    Article  Google Scholar 

  27. Toivonen H T, Tötterman S, Åkesson B (2007) Identification of state-dependent parameter models with support vector regression. Int J Control 80(9):1454–1470

    Article  MathSciNet  Google Scholar 

  28. Wang H, Song G (2014) Innovative narx recurrent neural network model for ultra-thin shape memory alloy wire. Neurocomputing 134:289–295

    Article  Google Scholar 

  29. Wang L, Cheng Y, Hu J (2010) A quasi-ARX neural network with switching mechanism to adaptive control of nonlinear systems. SICE Journal of Control Measurement, and System Integration 3(4):246–252

    Article  Google Scholar 

  30. Yang Y, Wu Q J (2016) Multilayer extreme learning machine with subnetwork nodes for representation learning. IEEE Trans Cybern 46(11):2570–2583

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abu Jami’in.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jami’in, M.A., Anam, K., Rulaningtyas, R. et al. Hierarchical linear and nonlinear adaptive learning model for system identification and prediction. Appl Intell 50, 1699–1710 (2020). https://doi.org/10.1007/s10489-019-01615-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01615-0

Keywords

Navigation