[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Revising event calculus theories to recover from unexpected observations

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Recent extensions of the Event Calculus resulted in powerful formalisms, able to reason about a multitude of commonsense phenomena in causal domains, involving epistemic notions, functional fluents and probabilistic aspects, among others. Less attention has been paid to the problem of automatically revising (correcting) a Knowledge Base when an observation contradicts inferences made regarding the world state. Despite mature work on the related belief revision field, adapting such results for the case of action theories is non-trivial. This paper describes how to address this problem for deterministic, yet partially observable, domains, by proposing a generic framework in the context of the Event Calculus, along with ASP encodings of the revision algorithm and a web-based tester of the formalism implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of Knowledge Representation. Elsevier Science, San Diego (2007)

    MATH  Google Scholar 

  2. Kowalski, R., Sergot, M.: A logic-based calculus of events. N. Gener. Comput. 4(1), 67–95 (1986)

    Article  MATH  Google Scholar 

  3. Miller, R., Shanahan, M.: Some alternative formulations of the event calculus. Computational Logic Logic Programming and Beyond, Essays in Honour of R. Kowalski Part 2 2408(1), 452–490 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Miller, R., Morgenstern, L., Patkos, T.: Reasoning about knowledge and action in an epistemic event calculus. In: Commonsense-13 (2013)

  5. Ma, J., Miller, R., Morgenstern, L., Patkos, T.: An epistemic event calculus for ASP-based reasoning about knowledge of the past, present and future. In: LPAR-13, pp. 75–87 (2013)

  6. Patkos, T., Plexousakis, D.: Reasoning with knowledge, action and time in dynamic and uncertain domains. In: IJCAI-09 (2009)

  7. Skarlatidis, A., Artikis, A., Filippou, J., Paliouras, G.: A probabilistic logic programming event calculus. TPLP 15, 213–245 (2015)

    MATH  Google Scholar 

  8. D’Asaro, F.A., Bikakis, A., Dickens, L., Miller, R.: Foundations for a probabilistic event calculus. In: LPNMR-17, pp. 57–63 (2017)

  9. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intell. 175(1), 236–263 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee, J., Palla, R.: Reformulating the situation calculus and the event calculus in the general theory of stable models and in answer set programming. JAIR 43(1), 571–620 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.J.: Iterated belief change in the situation calculus. Artif. Intell. 175(1), 165–192 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schwering, C., Lakemeyer, G., Pagnucco, M.: Belief revision and progression of knowledge bases in the epistemic situation calculus. In: IJCAI-15 (2015)

  13. Alchourron, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. J. Symb. Log. 50, 510–530 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tsampanaki, N., Flouris, G., Patkos, T.: Steps towards commonsense-driven belief revision in the event calculus. In: Proceedings of the Thirteenth International Symposium on Commonsense Reasoning, COMMONSENSE (2017)

  15. Miller, R, Shanahan, M: Some alternative formulations of the event calculus. In: Computational Logic: Logic Programming and Beyond, pp 452–490. Springer (2002)

  16. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2015)

    Google Scholar 

  17. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  18. Dalal, M.: Investigations into a theory of knowledge base revision: Preliminary report. In: AAAI-88, pp. 475–479 (1988)

  19. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and revising it. In: KR-91 (1991)

  20. Gardenfors, P., Makinson, D.: Revisions of knowledge systems using epistemic entrenchment. In: TARK-88, pp. 83–95 (1988)

  21. Georgiadis, P., Kapantaidakis, I., Christophides, V., Nguer, E.M., Spyratos, N.: Efficient rewriting algorithms for preference queries. In: IEEE 24th International Conference on Data Engineering, 2008. ICDE 2008, pp 1101–1110. IEEE (2008)

  22. Kießling, W.: Foundations of preferences in database systems. In: Proceedings of the 28th International Conference on Very Large Data Bases, pp 311–322. VLDB Endowment (2002)

  23. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Denecker, M., Vennekens, J., Vlaeminck, H., Wittocx, J., Bruynooghe, M.: Answer Set Programming’s Contributions to Classical Logic, pp 12–32. Springer, Berlin (2011)

    MATH  Google Scholar 

  25. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan & Claypool Publishers (2012)

  26. Flouris, G., Plexousakis, D., Antoniou, G.: On generalizing the AGM postulates. In: STAIRS-06, pp. 132–143 (2006)

  27. Qi, G., Du, J.: Model-based revision operators for terminologies in description logics. In: IJCAI-09, pp. 891–897 (2009)

  28. Ribeiro, M.M., Wassermann, R., Flouris, G., Antonioum, G.: . Minimal change: Relevance and recovery revisited 201, 59–80 (2013)

    Google Scholar 

  29. Moore, R.C.: A formal theory of knowledge and action. In: Hobbs, J., Moore, R. (eds.) Formal Theories of the Commonsense World, pp 319–358 (1985)

  30. Scherl, R., Levesque, H.: Knowledge, action, and the frame problem. Artif. Intell. 144(1–2), 1–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thielscher, M.: Representing the knowledge of a robot. In: KR-00, pp. 109–120 (2000)

  32. Scherl, R.B.: Reasoning about the interaction of knowlege, time and concurrent actions in the situation calculus. In: IJCAI-03, pp. 1091–1096 (2003)

  33. Kelly, R.F., Pearce, A.R.: Complex epistemic modalities in the situation calculus. In: KR-08, pp. 611–620 (2008)

  34. Morgenstern, L.: Knowledge preconditions for actions and plans. In: IJCAI-87 (1987)

  35. Demolombe, R., Pozos-Parra, M.P.: A simple and tractable extension of situation calculus to epistemic logic. In: ISMIS-00, pp. 515–524 (2000)

  36. Son, T.C., Baral, C.: Formalizing sensing actions – a transition function based approach. Artif. Intell. 125(1-2), 19–91 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Petrick, R., Levesque, H.: Knowledge equivalence in combined action theories. In: KR-02, pp. 303–314 (2002)

  38. Vassos, S., Levesque, H.: Progression of situation calculus action theories with incomplete information. In: IJCAI-07 (2007)

  39. Liu, Y., Lakemeyer, G.: On first-order definability and computability of progression for local-effect actions and beyond. In: IJCAI-09 (2009)

  40. Van Zee, M., Doder, D., Dastani, M., Van Der Torre, L.: AGM revision of beliefs about action and time. In: IJCAI15, pp. 3250–3256 (2015)

  41. Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with inductive logic programming. Mach. Learn. 100(2), 555–585 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Katzouris, N., Artikis, A., Paliouras, G.: Parallel online learning of event definitions. In: Inductive Logic Programming - 27th International Conference, ILP 2017, Orléans, France, September 4-6, 2017, Revised Selected Papers, pp. 78–93 (2017)

  43. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. In: Proceedings of the 5th Conference on Theoretical Aspects of Reasoning About Knowledge, pp 5–23. Morgan Kaufmann Publishers Inc. (1994)

Download references

Acknowledgments

The authors wish to thank the three anonymous reviewers for their insightful and very detailed comments, who helped improve significantly the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikoleta Tsampanaki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsampanaki, N., Patkos, T., Flouris, G. et al. Revising event calculus theories to recover from unexpected observations. Ann Math Artif Intell 89, 209–236 (2021). https://doi.org/10.1007/s10472-019-09663-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-019-09663-5

Keywords

Mathematics Subject Classification (2010)

Navigation