[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An empirical approach toward the resolution of conflicts in goal-oriented models

  • Regular Paper
  • Published:
Software & Systems Modeling Aims and scope Submit manuscript

Abstract

One significant problem requirements engineers have to cope with is the management of unclear requirements, ambiguities, and conflicts that may arise between stakeholders. Such issues may be desirable since they may allow for further elicitation of requirements that would have been missed otherwise. Goal models capture the objectives and other intentions of different stakeholders, together with their relationships. They can be used to refine unclear requirements and to detect conflicts and ambiguities early during model validation. However, resolving such ambiguities and conflicts is key for the successful implementation of the goal models. In this paper, we propose a novel approach to validate models in the Goal-oriented Requirement Language and resolve conflicts between the perspectives of intervening stakeholders (and especially between stakeholders of a given group). Our approach is based on a statistical analysis of empirical data that we collect from surveys designed for each group of stakeholders. We apply concept analysis in order to fix goal-model artifacts that are subject to conflict. We illustrate our approach using a case study of a goal model describing the involvement of undergraduate students in university research activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. Release 16.0.

  2. In SPSS, if the significance level of Levene’s test (i.e., Sig.) is larger than 0.05 (a priori \(\alpha \) = 0.05), the first line of the t test table, referring to the equal variances assumption, is selected. Otherwise, this means that the homogeneity of variances assumption is violated, and hence the second line of the t test table should be used.

References

  1. Akhigbe, O., Alhaj, M., Amyot, D., Badreddin, O., Braun, E., Cartwright, N., Richards, G., Mussbacher, G.: Creating quantitative goal models: governmental experience. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) Conceptual Modeling, Lecture Notes in Computer Science, vol. 8824, pp. 466–473. Springer International Publishing, Switzerland (2014). doi:10.1007/978-3-319-12206-9_40

  2. Almeida, C., Goulão, M., Araújo, J.: A systematic comparison of i* modelling tools based on syntactic and well-formedness rules. In: Castro, J. , Horkoff, J., Maiden, N.A.M., Yu, E.S.K. (eds.) iStar, CEUR Workshop Proceedings, vol. 978, pp. 43–48. CEUR-WS.org (2013)

  3. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Evaluating goal models within the goal-oriented requirement language. Int. J. Intell. Syst. 25, 841–877 (2010). doi:10.1002/int.v25:8

    Article  Google Scholar 

  4. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A lightweight GRL profile for i* modeling. In: Proceedings of the ER 2009 Workshops (CoMoL, ETheCoM, FP-UML, MOST-ONISW, QoIS, RIGiM, SeCoGIS) on Advances in Conceptual Modeling—Challenging Perspectives, ER’09, pp. 254–264. Springer, Berlin (2009). doi:10.1007/978-3-642-04947-7_31

  5. Ayala, C.P., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol, E., Quer, C.: A comparative analysis of i*-based agent-oriented modeling languages. In: Proceedings of the 17th International Conference on Software Engineering and Knowledge Engineering (SEKE’2005), Taipei, Taiwan, Republic of China, July 14–16, pp. 43–50 (2005)

  6. Boehm, B., Bose, P., Horowitz, E., Lee, M.J.: Software requirements negotiation and renegotiation aids. In: Proceedings of the 17th International Conference on Software Engineering, ICSE’95, pp. 243–253. ACM, New York (1995). doi:10.1145/225014.225037

  7. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software Engineering. The Kluwer International Series in Software Engineering. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  8. Easterbrook, S.: Handling conflict between domain descriptions with computer-supported negotiation. Knowl. Acquis. 3(3), 255–289 (1991)

    Article  Google Scholar 

  9. Espada, P., Goulo, M., Arajo, J.: A framework to evaluate complexity and completeness of KAOS goal models. In: Salinesi, C., Norrie, M., Pastor, s (eds.) Advanced Information Systems Engineering, Lecture Notes in Computer Science, vol. 7908, pp. 562–577. Springer, Berlin (2013). doi:10.1007/978-3-642-38709-8_36

  10. Fisher, R.: Statistical Methods for Research Workers. Cosmo Study Guides. Cosmo Publications, New Delhi (1925)

    Google Scholar 

  11. Franch, X.: A method for the definition of metrics over i* models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) Advanced Information Systems Engineering, Lecture Notes in Computer Science, vol. 5565, pp. 201–215. Springer, Berlin (2009). doi:10.1007/978-3-642-02144-2_19

  12. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis and reasoning in the tropos methodology. Eng. Appl. Artif. Intell. 18, 159–171 (2005). doi:10.1016/j.engappai.2004.11.017

    Article  Google Scholar 

  13. Gosset, W.S.: The probable error of a mean. Biometrika 6(1), 1–25 (1908). Originally published under the pseudonym “Student”

    Article  MathSciNet  Google Scholar 

  14. Grimmer, J., Stewart, B.M.: Text as data: the promise and pitfalls of automatic content analysis methods for political texts. Polit. Anal. 21, 267–297 (2013)

    Article  Google Scholar 

  15. Hassine, J., Amyot, D.: GRL model validation: a statistical approach. In: Haugen, Ø., Reed, R., Gotzhein, R. (eds.) System Analysis and Modeling: Theory and Practice, Lecture Notes in Computer Science, vol. 7744, pp. 212–228. Springer, Berlin (2013). doi:10.1007/978-3-642-36757-1_13

  16. Hassine, J., Amyot, D.: A questionnaire-based survey methodology for systematically validating goal-oriented models. Requir. Eng. (2015). doi:10.1007/s00766-015-0221-7

  17. Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented satisfaction analysis techniques. Requir. Eng. 18(3), 199–222 (2013). doi:10.1007/s00766-011-0143-y

    Article  Google Scholar 

  18. Horkoff, J., Yu, E., Liu, L.: Analyzing trust in technology strategies. In: Proceedings of the 2006 International Conference on Privacy, Security and Trust: Bridge the Gap Between PST Technologies and Business Services, PST’06, pp. 9:1–9:12. ACM, New York (2006). doi:10.1145/1501434.1501446

  19. Horkoff, J., Yu, E.S.K.: Qualitative, interactive, backward analysis of i* models. In: de Castro, J.B., Franch, X., Perini, A., Yu, E.S.K. (eds.) Proceedings of the 3rd International i* Workshop (iStar), Recife, Brazil, CEUR Workshop Proceedings, vol. 322, pp. 43–46. CEUR-WS.org (2008)

  20. Iarossi, G.: The power of survey design: a user’s guide for managing surveys, interpreting results, and influencing respondents. Stand Alone Series. World Bank (2006). http://books.google.tn/books?id=x964AAAAIAAJ

  21. IBM: SPSS software. (2012). http://www-01.ibm.com/software/analytics/spss/

  22. ITU-T: Recommendation Z.151. (10/12), User Requirements Notation (URN) language definition, Geneva, Switzerland (2012).http://www.itu.int/rec/T-REC-Z.151/en

  23. Jackson, S.: Research methods: a modular approach. wadsworth/cengage learning (2010). http://books.google.com.sa/books?id=p9aoqIzcqWoC

  24. Jamieson, S.: Likert scales: how to (ab)use them. Med. Educ. 38(12), 1217–1218 (2004). doi:10.1111/j.1365-2929.2004.02012.x

    Article  Google Scholar 

  25. Jackson, K.M., Trochim, W.M.K.: Concept mapping as an alternative approach for the analysis of open-ended survey responses. Organ. Res. Methods 5, 307–332 (2002)

    Article  Google Scholar 

  26. jUCMNav v6.0.0: jUCMNav Project (tool, documentation, and meta-model) (2014). http://softwareengineering.ca/~jucmnav

  27. Jureta, I., Faulkner, S., Schobbens, P.Y.: Clear justification of modeling decisions for goal-oriented requirements engineering. Requir. Eng. 13(2), 87–115 (2008). doi:10.1007/s00766-007-0056-y

    Article  Google Scholar 

  28. Jureta, I., Mylopoulos, J., Faulkner, S.: Analysis of multi-party agreement in requirements validation. In: 17th IEEE International Requirements Engineering Conference (RE), pp. 57–66. IEEE Computer Society, Washington (2009). doi:10.1109/RE.2009.8

  29. Kassab, M.: An integrated approach of AHP and NFRs framework. In: Wieringa, R., Nurcan, S., Rolland, C., Cavarero J.L. (eds.) RCIS, pp. 1–8. IEEE (2013)

  30. Knapp, T.R.: Treating ordinal scales as interval scales: an attempt to resolve the controversy. Nurs. Res. 39(2), 121–123 (1990)

    Article  Google Scholar 

  31. Labovitz, S.: Some observations on measurement and statistics. Soc. Forces 46(2), 151–160 (1967). doi:10.2307/2574595

    Article  Google Scholar 

  32. Levene, H.: Robust tests for equality of variances. In: Olkin, I. (ed.) Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, pp. 278–292. Stanford University Press, Palo Alto (1960)

    Google Scholar 

  33. Liaskos, S., Jalman, R., Aranda, J.: On eliciting contribution measures in goal models. In: 20th IEEE International Requirements Engineering Conference (RE), pp. 221–230. IEEE CS (2012). doi: 10.1109/RE.2012.6345808

  34. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140(140), 1–55 (1932). http://www.citeulike.org/user/robertlischke/article/2731047

  35. Mirbel, I., Villata, S.: Enhancing goal-based requirements consistency: an argumentation-based approach. In: Fisher, M., van der Torre, L., Dastani, M., Governatori, G. (eds.) Computational Logic in Multi-agent Systems, Lecture Notes in Computer Science, vol. 7486, pp. 110–127. Springer, Berlin (2012). doi:10.1007/978-3-642-32897-8_9

  36. Norman, G.: Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. 15(5), 625–632 (2010). doi:10.1007/s10459-010-9222-y

    Article  Google Scholar 

  37. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceedings of the Conference on The Future of Software Engineering, ICSE’00, pp. 35–46. ACM, New York (2000). doi:10.1145/336512.336523

  38. Robinson, W.N.: Integrating multiple specifications using domain goals. In: Proceedings of the 5th International Workshop on Software Specification and Design, IWSSD’89, pp. 219–226. ACM, New York (1989). doi:10.1145/75199.75232

  39. Robinson, W.N.: Negotiation behavior during requirements specification. In: Proceedings of the 12th International Conference on Software Engineering, ICSE’90, pp. 268–276. IEEE Computer Society Press, Los Alamitos (1990). http://dl.acm.org/citation.cfm?id=100296.100335

  40. Ryan, G.W., Bernard, H.R.: Data management and analysis methods. In: Denzin, N.K., Lincoln Y.S. (eds.) The Handbook of Qualitative Research, 2nd edn., pp. 769–802. Sage, London, Thousand Oaks, New Dehli (2000)

  41. Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48(1), 9–26 (1990). doi:10.1016/0377-2217(90)90057-I. Decision making by the analytic hierarchy process: Theory and applications

    Article  MathSciNet  MATH  Google Scholar 

  42. Schuman, H., Presser, S.: Questions and Answers in Attitude Surveys: Experiments on Question Form, Wording, and Context. Academic, New York (1981)

    Google Scholar 

  43. Seidel, J., Kelle, U.: Different functions of coding in the analysis of textual data. In: Kelle, U. (ed.) Computer-Aided Qualitative Data Analysis: Theory, Methods and Practice, pp. 52–61. Sage, London, Thousand Oaks, New Dehli (1995)

  44. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics, 5th edn. Allyn & Bacon, Needham Heights (2006)

    Google Scholar 

  45. van Lamsweerde, A.: Requirements engineering: from craft to discipline. In: Harrold, M.J., Murphy, G.C. (eds.) Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2008), ACM, Atlanta, Georgia, USA, pp. 238–249 (2008)

  46. van Lamsweerde, A., Letier, E., Darimont, R.: Managing conflicts in goal-driven requirements engineering. IEEE Trans. Softw. Eng. 24(11), 908–926 (1998). doi:10.1109/32.730542

    Article  Google Scholar 

  47. Vinay, S., Aithal, S., Sudhakara, G.: A quantitative approach using goal-oriented requirements engineering methodology and analytic hierarchy process in selecting the best alternative. In: Kumar, A.M., S, R., Kumar, T.V.S. (eds.) Proceedings of International Conference on Advances in Computing, Advances in Intelligent Systems and Computing, vol. 174, pp. 441–454. Springer, India (2012). doi:10.1007/978-81-322-0740-5_54

  48. Wright, H.K., Kim, M., Perry, D.E.: Validity concerns in software engineering research. In: Roman, G.C., Sullivan, K.J. (eds.) FoSER, pp. 411–414. ACM, New York (2010)

    Chapter  Google Scholar 

  49. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements engineering. In: Proceedings of the 3rd IEEE International Symposium on Requirements Engineering, RE’97, pp. 226–235. IEEE Computer Society, Washington, DC (1997) http://portal.acm.org/citation.cfm?id=827255.827807

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameleddine Hassine.

Additional information

Communicated by Prof. Ketil Stølen.

The authors would like to acknowledge the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through Project No. IN111017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassine, J., Amyot, D. An empirical approach toward the resolution of conflicts in goal-oriented models. Softw Syst Model 16, 279–306 (2017). https://doi.org/10.1007/s10270-015-0460-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-015-0460-6

Keywords

Navigation