[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Superior Toughened Biodegradable Poly(L-lactic acid)-based Blends with Enhanced Melt Strength and Excellent Low-temperature Toughness via In situ Reaction Compatibilization

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The toughened poly(L-lactic acid)/poly(butylene succinate-butylene terephthalate) (PLLA/PBST) blend with enhanced melt strength and excellent low temperature toughness and strength was prepared by melt compounding through in situ compatibilization reaction in presence of multifunctional epoxy compound (ADR). The PLLA/PBST blend was an immiscible system, and the compatibility of the PLLA/PBST blend was improved after adding ADR. FTIR and GPC curves confirmed the formation of the PLLA-g-PBST copolymer, which improved the interfacial bonding of the blend and therefore the PLLA/PBST/ADR blend showed excellent melt strength and mechanical properties. For the PLLA/PBST/ADR blend with 70/30 PLLA/PBST content, the complex viscosity increased significantly with increasing ADR content. Moreover, the tensile strength, elongation at break and impact strength all increased obviously with increasing the ADR content. The elongation at break of the blend reached the maximum value of 392.7%, which was 93.2 times that of neat PLLA. And the impact strength of the blend reached the maximum value of 74.7 kJ/m2, which was 21.3 times that of neat PLLA. Interestingly, the PLLA/PBST/ADR blend exhibited excellent low-temperature toughness and strength. At −20 °C, the elongation at break of the PLLA/PBST/ADR blend was as high as 93.2%, and the impact strength reached 18.8 kJ/m2. Meanwhile, the tensile strength of the blend at low temperature was also high (64.7 MPa), which was beneficial to the application of PLA in the low temperature field. In addition, the PLLA/PBST/ADR blend maintaind good biodegradability, which was of great significance to the wide application of PLLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Garlotta, D. A literature review of poly(lactic acid). J. Polym. Environ. 2001, 9, 63–84.

    Article  CAS  Google Scholar 

  2. Sodergard, A.; Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 2002, 27, 1123–1163.

    Article  CAS  Google Scholar 

  3. Lim, L. T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852.

    Article  CAS  Google Scholar 

  4. Ho, C. H.; Wang, C. H.; Lin, C. I.; Lee, Y. D. Synthesis and characterization of TPO-PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer 2008, 49, 3902–3910.

    Article  CAS  Google Scholar 

  5. Anderson, K. S.; Hillmyer, M. A. The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 2004, 45, 8809–8823.

    Article  CAS  Google Scholar 

  6. Ma, P.; Hristova-Bogaerds, D. G.; Goossens, J. G. P.; Spoelstra, A. B.; Zhang, Y.; Lemstra, P. J. Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur. Polym. J. 2012, 48, 146–154.

    Article  CAS  Google Scholar 

  7. Gajria, A. M.; Dave, V.; Gross, R. A.; McCarthy, S. P. Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer 1996, 37, 437–444.

    Article  CAS  Google Scholar 

  8. Eguiburu, J. L.; Iruin, J. J.; Fernandez-Berridi, M. J.; Roman, J. S. Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer 1998, 39, 6891–6897.

    Article  CAS  Google Scholar 

  9. Zhang, W.; Chen, L.; Zhang, Y. Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 2009, 50, 1311–1315.

    Article  CAS  Google Scholar 

  10. Feng, F.; Zhao, X. W.; Ye, L. Structure and Properties of Ultradrawn Polylactide/Thermoplastic Polyurethane Elastomer Blends. J. Macromol. Sci., Part B-Phys. 2011, 50, 1500–1507.

    Article  CAS  Google Scholar 

  11. Han, L. J.; Han, C. Y.; Zhang, H. L.; Chen, S.; Dong, L. S. Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Compos. 2012, 33, 850–859.

    Article  CAS  Google Scholar 

  12. Zhao, H. W.; Bian, Y. J.; Li, Y.; Dong, Q. L.; Han, C. Y.; Dong, L. S. Bioresource-based blends of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and stereocomplex polylactide with improved rheological and mechanical properties and enzymatic hydrolysis. J. Mater. Chem. A 2014, 2, 8881–8892.

    Article  CAS  Google Scholar 

  13. Jiang, L.; Wolcott, M. P.; Zhang, J. W. Study of biodegradable polyactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 2006, 7, 199–207.

    Article  PubMed  Google Scholar 

  14. Ma, P.; Cai, X.; Zhang, Y.; Wang, S.; Dong, W.; Chen, M.; Lemstra, P. J. In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym. Degrad. Stabil. 2014, 102, 145–151.

    Article  CAS  Google Scholar 

  15. Zhang, K. Y.; Mohanty, A. K.; Misra, M. Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl. Mater. Interfaces 2012, 4, 3091–3101.

    Article  CAS  PubMed  Google Scholar 

  16. Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 2016, 105, 1–9.

    Article  CAS  Google Scholar 

  17. Chuayjuljit, S.; Wongwaiwattanakul, C.; Chaiwutthinan, P.; Prasassarakich, P. Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: physical and morphological properties. Polym. Compos. 2017, 38, 2841–2851.

    Article  CAS  Google Scholar 

  18. Zhao, X. P.; Zhang, D. F.; Yu, S. T.; Zhou, H. Y.; Peng, S. X. Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends. e-Polymers 2021, 21, 793–810.

    Article  Google Scholar 

  19. Tsuji, H.; Ikada, Y. Blends of aliphatic polyesters. 2. Hydrolysis of solution-cast blends from poly(L-lactide) and poly(epsilon-caprolactone) in phosphate-buffered solution. J. Appl. Polym. Sci. 1998, 67, 405–415.

    Article  CAS  Google Scholar 

  20. Garcia-Campo, M. J.; Boronat, T.; Quiles-Carrillo, L.; Balart, R.; Montanes, N. Manufacturing and characterization of toughened poly(lactic acid) (PLA) formulations by ternary blends with biopolyesters. Polymers 2018, 10, 15.

    Google Scholar 

  21. Si, W. J.; Zhang, H.; Li, Y. D.; Huang, C. L.; Weng, Y. X.; Zeng, J. B. Highly toughened and heat resistant poly(L-lactide)/poly(ε-caprolactone) blends via engineering balance between kinetics and thermodynamics of phasic morphology with stereocomplex crystallite. Compos. Part B-Eng. 2020, 197, 11.

    Article  Google Scholar 

  22. Zhao, T. H.; Yuan, W. Q.; Li, Y. D.; Weng, Y. X.; Zeng, J. B. Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends. Macromolecules 2018, 51, 2027–2037.

    Article  CAS  Google Scholar 

  23. Wang, M.; Wu, Y.; Li, Y. D.; Zeng, J. B. Progress in toughening poly(lactic acid) with renewable polymers. Polym. Rev. 2017, 57, 557–593.

    Article  CAS  Google Scholar 

  24. Zhao, X. P.; Hu, H.; Wang, X.; Yu, X. L.; Zhou, W. Y.; Peng, S. X. Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv. 2020, 10, 13316–13368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zuo, H. J.; Liu, J. Y.; Huang, D.; Bai, Y. B.; Cui, L.; Pan, L.; Zhang, K. Y.; Wang, H. Y. Sustainable and high-performance ternary blends from polylactide, CO2-based polyester and microbial polyesters with different chemical structure. J. Polym. Sci. 2021, 59, 1578–1595.

    Article  CAS  Google Scholar 

  26. Li, R.; Wu, L.; Li, B. G. Poly(L-lactide)/PEG-mb-PBAT blends with highly improved toughness and balanced performance. Eur. Polym. J. 2018, 100, 178–186.

    Article  CAS  Google Scholar 

  27. Pan, H. W.; Li, Z. L.; Yang, J.; Li, X.; Ai, X.; Hao, Y. P.; Zhang, H. L.; Dong, L. S. The effect of MDI on the structure and mechanical properties of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate) blends. RSC Adv. 2018, 8, 4610–4623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, Y.; Zhang, Y.; Li, Z. L.; Pan, H. W.; Dong, Q. L.; Han, L. J.; Zhang, H. L.; Dong, L. S. Rheology, mechanical properties and crystallization behavior of glycidyl methacrylate grafted poly(ethylene octene) toughened poly(lactic acid) blends. Korean J. Chem. Eng. 2016, 33, 1104–1114.

    Article  CAS  Google Scholar 

  29. Jia, S. L.; Chen, Y. J.; Yu, Y. L.; Han, L. J.; Zhang, H. L.; Dong, L. S. Effect of ethylene/butyl methacrylate/glycidyl methacrylate terpolymer on toughness and biodegradation of poly(L-lactic acid). Int. J. Biol. Macromol. 2019, 127, 415–424.

    Article  CAS  PubMed  Google Scholar 

  30. Dong, W. F.; Zou, B. S.; Yan, Y. Y.; Ma, P. M.; Chen, M. Q. Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Int. J. Mol. Sci. 2013, 14, 20189–20203.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang, X.; Peng, S. X.; Chen, H.; Yu, X. L.; Zhao, X. P. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in situ reactive compatibilization. Compos. Part B-Eng. 2019, 173, 10.

    Article  Google Scholar 

  32. Zhang, H.; Yuan, W. Q.; Weng, Y. X.; Zeng, J. B.; Li, Y. D. Morphological control and interfacial compatibilization of fully biobased PLA/ENR blends via partial crosslinking ENR with sebacic acid. Ind. Crop. Prod. 2022, 180, 12.

    Article  Google Scholar 

  33. Zhao, X. P.; Li, J. C.; Liu, J. C.; Zhou, W. Y.; Peng, S. X. Recent progress of preparation of branched poly(lactic acid) and its application in the modification of polylactic acid materials. Int. J. Biol. Macromol. 2021, 193, 874–892.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, G.; Zhang, W.; Han, L.; Xu, N.; Ji, W. Toughening modification of polylactic acid with biodegradable aliphatic-aromatic copolyester. Petrochem. Technol. 2014, 43, 561–565.

    CAS  Google Scholar 

  35. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stabil. 2012, 97, 1898–1914.

    Article  CAS  Google Scholar 

  36. Zhou, Y.; Wang, J.; Cai, S. Y.; Wang, Z. G.; Zhang, N. W.; Ren, J. Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic acid)/poly(propylene carbonate) blends. Polym. Bull. 2018, 75, 5437–5454.

    Article  CAS  Google Scholar 

  37. Huang, Y.; Zhang, C. M.; Pan, Y. H.; Wang, W. W.; Jiang, L.; Dan, Y. Study on the effect of dicumyl peroxide on structure and properties of poly(lactic acid)/natural rubber blend. J. Polym. Environ. 2013, 21, 375–387.

    Article  CAS  Google Scholar 

  38. Wu, D. F.; Zhang, Y. S.; Zhang, M.; Zhou, W. D. Phase behavior and its viscoelastic response of polylactide/poly(t-caprolactone) blend. Eur. Polym. J. 2008, 44, 2171–2183.

    Article  CAS  Google Scholar 

  39. Singla, R. K.; Zafar, M. T.; Maiti, S. N.; Ghosh, A. K. Physical blends of PLA with high vinyl acetate containing EVA and their rheological, thermo-mechanical and morphological responses. Polym. Test. 2017, 63, 398–406.

    Article  CAS  Google Scholar 

  40. Zhang, N. W.; Wang, Q. F.; Ren, J.; Wang, L. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J. Mater. Sci. 2009, 44, 250–256.

    Article  CAS  Google Scholar 

  41. Jia, S.; Chen, Y.; Bian, J.; Pan, H.; Wang, X.; Zhao, L.; Han, L.; Zhang, H.; Dong, L.; Zhang, H. Preparation and properties of poly(L-lactic acid) blends with excellent low-temperature toughness by blending acrylic ester based impact resistance agent. Int. J. Biol. Macromol. 2021, 183, 1871–1880.

    Article  CAS  PubMed  Google Scholar 

  42. Jia, S.; Zhao, L.; Wang, X.; Chen, Y.; Pan, H.; Han, L.; Zhang, H.; Dong, L.; Zhang, H. Poly(lactic acid) blends with excellent low temperature toughness: a comparative study on poly(lactic acid) blends with different toughening agents. Int. J. Biol. Macromol. 2022, 201, 662–675.

    Article  CAS  PubMed  Google Scholar 

  43. Tsuji, H.; Ishizaka, T. Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(ε-caprolactone) and poly(L-lactide). Int. J. Biol. Macromol. 2001, 29, 83–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Science and Technology Development Plan of Jilin Province (No. 20210203199SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Jing Han.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, SL., Wang, XY., Zhang, Y. et al. Superior Toughened Biodegradable Poly(L-lactic acid)-based Blends with Enhanced Melt Strength and Excellent Low-temperature Toughness via In situ Reaction Compatibilization. Chin J Polym Sci 41, 373–385 (2023). https://doi.org/10.1007/s10118-022-2862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2862-6

Keywords

Navigation