Abstract
The toughened poly(L-lactic acid)/poly(butylene succinate-butylene terephthalate) (PLLA/PBST) blend with enhanced melt strength and excellent low temperature toughness and strength was prepared by melt compounding through in situ compatibilization reaction in presence of multifunctional epoxy compound (ADR). The PLLA/PBST blend was an immiscible system, and the compatibility of the PLLA/PBST blend was improved after adding ADR. FTIR and GPC curves confirmed the formation of the PLLA-g-PBST copolymer, which improved the interfacial bonding of the blend and therefore the PLLA/PBST/ADR blend showed excellent melt strength and mechanical properties. For the PLLA/PBST/ADR blend with 70/30 PLLA/PBST content, the complex viscosity increased significantly with increasing ADR content. Moreover, the tensile strength, elongation at break and impact strength all increased obviously with increasing the ADR content. The elongation at break of the blend reached the maximum value of 392.7%, which was 93.2 times that of neat PLLA. And the impact strength of the blend reached the maximum value of 74.7 kJ/m2, which was 21.3 times that of neat PLLA. Interestingly, the PLLA/PBST/ADR blend exhibited excellent low-temperature toughness and strength. At −20 °C, the elongation at break of the PLLA/PBST/ADR blend was as high as 93.2%, and the impact strength reached 18.8 kJ/m2. Meanwhile, the tensile strength of the blend at low temperature was also high (64.7 MPa), which was beneficial to the application of PLA in the low temperature field. In addition, the PLLA/PBST/ADR blend maintaind good biodegradability, which was of great significance to the wide application of PLLA.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Garlotta, D. A literature review of poly(lactic acid). J. Polym. Environ. 2001, 9, 63–84.
Sodergard, A.; Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 2002, 27, 1123–1163.
Lim, L. T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852.
Ho, C. H.; Wang, C. H.; Lin, C. I.; Lee, Y. D. Synthesis and characterization of TPO-PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer 2008, 49, 3902–3910.
Anderson, K. S.; Hillmyer, M. A. The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 2004, 45, 8809–8823.
Ma, P.; Hristova-Bogaerds, D. G.; Goossens, J. G. P.; Spoelstra, A. B.; Zhang, Y.; Lemstra, P. J. Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur. Polym. J. 2012, 48, 146–154.
Gajria, A. M.; Dave, V.; Gross, R. A.; McCarthy, S. P. Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer 1996, 37, 437–444.
Eguiburu, J. L.; Iruin, J. J.; Fernandez-Berridi, M. J.; Roman, J. S. Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer 1998, 39, 6891–6897.
Zhang, W.; Chen, L.; Zhang, Y. Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 2009, 50, 1311–1315.
Feng, F.; Zhao, X. W.; Ye, L. Structure and Properties of Ultradrawn Polylactide/Thermoplastic Polyurethane Elastomer Blends. J. Macromol. Sci., Part B-Phys. 2011, 50, 1500–1507.
Han, L. J.; Han, C. Y.; Zhang, H. L.; Chen, S.; Dong, L. S. Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Compos. 2012, 33, 850–859.
Zhao, H. W.; Bian, Y. J.; Li, Y.; Dong, Q. L.; Han, C. Y.; Dong, L. S. Bioresource-based blends of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and stereocomplex polylactide with improved rheological and mechanical properties and enzymatic hydrolysis. J. Mater. Chem. A 2014, 2, 8881–8892.
Jiang, L.; Wolcott, M. P.; Zhang, J. W. Study of biodegradable polyactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 2006, 7, 199–207.
Ma, P.; Cai, X.; Zhang, Y.; Wang, S.; Dong, W.; Chen, M.; Lemstra, P. J. In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym. Degrad. Stabil. 2014, 102, 145–151.
Zhang, K. Y.; Mohanty, A. K.; Misra, M. Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl. Mater. Interfaces 2012, 4, 3091–3101.
Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 2016, 105, 1–9.
Chuayjuljit, S.; Wongwaiwattanakul, C.; Chaiwutthinan, P.; Prasassarakich, P. Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: physical and morphological properties. Polym. Compos. 2017, 38, 2841–2851.
Zhao, X. P.; Zhang, D. F.; Yu, S. T.; Zhou, H. Y.; Peng, S. X. Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends. e-Polymers 2021, 21, 793–810.
Tsuji, H.; Ikada, Y. Blends of aliphatic polyesters. 2. Hydrolysis of solution-cast blends from poly(L-lactide) and poly(epsilon-caprolactone) in phosphate-buffered solution. J. Appl. Polym. Sci. 1998, 67, 405–415.
Garcia-Campo, M. J.; Boronat, T.; Quiles-Carrillo, L.; Balart, R.; Montanes, N. Manufacturing and characterization of toughened poly(lactic acid) (PLA) formulations by ternary blends with biopolyesters. Polymers 2018, 10, 15.
Si, W. J.; Zhang, H.; Li, Y. D.; Huang, C. L.; Weng, Y. X.; Zeng, J. B. Highly toughened and heat resistant poly(L-lactide)/poly(ε-caprolactone) blends via engineering balance between kinetics and thermodynamics of phasic morphology with stereocomplex crystallite. Compos. Part B-Eng. 2020, 197, 11.
Zhao, T. H.; Yuan, W. Q.; Li, Y. D.; Weng, Y. X.; Zeng, J. B. Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends. Macromolecules 2018, 51, 2027–2037.
Wang, M.; Wu, Y.; Li, Y. D.; Zeng, J. B. Progress in toughening poly(lactic acid) with renewable polymers. Polym. Rev. 2017, 57, 557–593.
Zhao, X. P.; Hu, H.; Wang, X.; Yu, X. L.; Zhou, W. Y.; Peng, S. X. Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv. 2020, 10, 13316–13368.
Zuo, H. J.; Liu, J. Y.; Huang, D.; Bai, Y. B.; Cui, L.; Pan, L.; Zhang, K. Y.; Wang, H. Y. Sustainable and high-performance ternary blends from polylactide, CO2-based polyester and microbial polyesters with different chemical structure. J. Polym. Sci. 2021, 59, 1578–1595.
Li, R.; Wu, L.; Li, B. G. Poly(L-lactide)/PEG-mb-PBAT blends with highly improved toughness and balanced performance. Eur. Polym. J. 2018, 100, 178–186.
Pan, H. W.; Li, Z. L.; Yang, J.; Li, X.; Ai, X.; Hao, Y. P.; Zhang, H. L.; Dong, L. S. The effect of MDI on the structure and mechanical properties of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate) blends. RSC Adv. 2018, 8, 4610–4623.
Zhao, Y.; Zhang, Y.; Li, Z. L.; Pan, H. W.; Dong, Q. L.; Han, L. J.; Zhang, H. L.; Dong, L. S. Rheology, mechanical properties and crystallization behavior of glycidyl methacrylate grafted poly(ethylene octene) toughened poly(lactic acid) blends. Korean J. Chem. Eng. 2016, 33, 1104–1114.
Jia, S. L.; Chen, Y. J.; Yu, Y. L.; Han, L. J.; Zhang, H. L.; Dong, L. S. Effect of ethylene/butyl methacrylate/glycidyl methacrylate terpolymer on toughness and biodegradation of poly(L-lactic acid). Int. J. Biol. Macromol. 2019, 127, 415–424.
Dong, W. F.; Zou, B. S.; Yan, Y. Y.; Ma, P. M.; Chen, M. Q. Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Int. J. Mol. Sci. 2013, 14, 20189–20203.
Wang, X.; Peng, S. X.; Chen, H.; Yu, X. L.; Zhao, X. P. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in situ reactive compatibilization. Compos. Part B-Eng. 2019, 173, 10.
Zhang, H.; Yuan, W. Q.; Weng, Y. X.; Zeng, J. B.; Li, Y. D. Morphological control and interfacial compatibilization of fully biobased PLA/ENR blends via partial crosslinking ENR with sebacic acid. Ind. Crop. Prod. 2022, 180, 12.
Zhao, X. P.; Li, J. C.; Liu, J. C.; Zhou, W. Y.; Peng, S. X. Recent progress of preparation of branched poly(lactic acid) and its application in the modification of polylactic acid materials. Int. J. Biol. Macromol. 2021, 193, 874–892.
Zhu, G.; Zhang, W.; Han, L.; Xu, N.; Ji, W. Toughening modification of polylactic acid with biodegradable aliphatic-aromatic copolyester. Petrochem. Technol. 2014, 43, 561–565.
Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stabil. 2012, 97, 1898–1914.
Zhou, Y.; Wang, J.; Cai, S. Y.; Wang, Z. G.; Zhang, N. W.; Ren, J. Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic acid)/poly(propylene carbonate) blends. Polym. Bull. 2018, 75, 5437–5454.
Huang, Y.; Zhang, C. M.; Pan, Y. H.; Wang, W. W.; Jiang, L.; Dan, Y. Study on the effect of dicumyl peroxide on structure and properties of poly(lactic acid)/natural rubber blend. J. Polym. Environ. 2013, 21, 375–387.
Wu, D. F.; Zhang, Y. S.; Zhang, M.; Zhou, W. D. Phase behavior and its viscoelastic response of polylactide/poly(t-caprolactone) blend. Eur. Polym. J. 2008, 44, 2171–2183.
Singla, R. K.; Zafar, M. T.; Maiti, S. N.; Ghosh, A. K. Physical blends of PLA with high vinyl acetate containing EVA and their rheological, thermo-mechanical and morphological responses. Polym. Test. 2017, 63, 398–406.
Zhang, N. W.; Wang, Q. F.; Ren, J.; Wang, L. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J. Mater. Sci. 2009, 44, 250–256.
Jia, S.; Chen, Y.; Bian, J.; Pan, H.; Wang, X.; Zhao, L.; Han, L.; Zhang, H.; Dong, L.; Zhang, H. Preparation and properties of poly(L-lactic acid) blends with excellent low-temperature toughness by blending acrylic ester based impact resistance agent. Int. J. Biol. Macromol. 2021, 183, 1871–1880.
Jia, S.; Zhao, L.; Wang, X.; Chen, Y.; Pan, H.; Han, L.; Zhang, H.; Dong, L.; Zhang, H. Poly(lactic acid) blends with excellent low temperature toughness: a comparative study on poly(lactic acid) blends with different toughening agents. Int. J. Biol. Macromol. 2022, 201, 662–675.
Tsuji, H.; Ishizaka, T. Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(ε-caprolactone) and poly(L-lactide). Int. J. Biol. Macromol. 2001, 29, 83–89.
Acknowledgments
This work was financially supported by the Science and Technology Development Plan of Jilin Province (No. 20210203199SF).
Author information
Authors and Affiliations
Corresponding author
Additional information
Notes
The authors declare no competing financial interest.
Rights and permissions
About this article
Cite this article
Jia, SL., Wang, XY., Zhang, Y. et al. Superior Toughened Biodegradable Poly(L-lactic acid)-based Blends with Enhanced Melt Strength and Excellent Low-temperature Toughness via In situ Reaction Compatibilization. Chin J Polym Sci 41, 373–385 (2023). https://doi.org/10.1007/s10118-022-2862-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10118-022-2862-6