Abstract
While many classes of cutting-planes are at the disposal of integer programming solvers, our scientific understanding is far from complete with regards to cutting-plane selection, i.e., the task of selecting a portfolio of cutting-planes to be added to the LP relaxation at a given node of the branch-and-bound tree. In this paper we review the different classes of cutting-planes available, known theoretical results about their relative strength, important issues pertaining to cut selection, and discuss some possible new directions to be pursued in order to accomplish cutting-plane selection in a more principled manner. Finally, we review some lines of work that we undertook to provide a preliminary theoretical underpinning for some of the issues related to cut selection.
Similar content being viewed by others
Notes
Packing sets are of the form \(\{x \in \mathbb {R}^n_+ \mid (a^i)^{\top } x \le b_i,\,\forall i \in I \}\) for a possibly infinite set I where all \((a^i,b_i)\)’s are non-negative, i.e., it is not necessarily polyhedral. This generalization is required because while the aggregation closure is a packing set, it is not known if it is polyhedral.
One can show that the integer hull of a packing set is also a packing set [56], and thus so is \(\tilde{P}\).
References
Achterberg, T.: Exploiting degeneracy in MIP. In: Talk at Aussois 22nd Combinatorial Optimization Workshop. http://www.iasi.cnr.it/aussois/web/uploads/2018/slides/achterbergt.pdf (2018). Accessed 1 Feb 2018
Achterberg, T.: LP basis selection and cutting planes. In: Talk at MIP. http://www2.isye.gatech.edu/mip2010/program/program.pdf (2010). Accessed 1 Feb 2018
Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007)
Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)
Achterberg, T., Raack, C.: The MCF-separator: detecting and exploiting multi-commodity flow structures in MIPs. Math. Program. Comput. 2(2), 125–165 (2010)
Agra, A., Constantino, M.F.: Lifting two-integer knapsack inequalities. Math. Program. 109, 115–154 (2007)
Alvarez, A.M., Louveaux, Q., Wehenkel, L.: A machine learning-based approximation of strong branching. INFORMS J. Comput. 29(1), 185–195 (2017)
Alvarez, A.M., Wehenkel, L., Louveaux, Q.: Machine learning to balance the load in parallel branch-and-bound. http://hdl.handle.net/2268/181086 (2015). Accessed 1 Feb 2018
Amaldi, E., Coniglio, S., Gualandi, S.: Coordinated cutting plane generation via multi-objective separation. Math. Program. 143(1–2), 87–110 (2014)
Andersen, K., Cornuéjols, G., Li, Y.: Reduce-and-split cuts: improving the performance of mixed integer Gomory cuts. Manage. Sci. 51, 1720–1732 (2005)
Andersen, K., Cornuéjols, G., Li, Y.: Split closure and intersection cuts. Math. Program. 102, 457–493 (2005)
Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) Proceedings 12th Conference on Integer Programming and Combinatorial Optimization, pp. 30–42. Springer (2007)
Andreello, G., Caprara, A., Fischetti, M.: Embedding \(\{0, 1/2\}\)-cuts in a branch-and-cut framework: a computational study. INFORMS J. Comput. 19(2), 229–238 (2007)
Aráoz, J., Evans, L., Gomory, R.E., Johnson, E.L.: Cyclic groups and knapsack facets. Math. Program. 96, 377–408 (2003)
Atamtürk, A.: On the facets of the mixed-integer knapsack polyhedron. Math. Program. 98, 145–175 (2003)
Atamtürk, A.: Sequence independent lifting for mixed-integer programming. Oper. Res. 52, 487–490 (2004)
Atamtürk, A., Günlük, O.: Mingling: mixed-integer rounding with bounds. Math. Program. 123(2), 315–338 (2010)
Atamtürk, A., Küçükyavuz, S., Tezel, B.: Path cover and path pack inequalities for the capacitated fixed-charge network flow problem. SIAM J. Optim. 27(3), 1943–1976 (2017)
Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Conflict graphs in integer programming. Eur. J. Oper. Res. 121, 40–55 (2000)
Au, Y.H., Tunçel, L.: A comprehensive analysis of polyhedral lift-and-project methods. SIAM J. Discrete Math. 30(1), 411–451 (2016)
Au, Y.H., Tunçel, L.: Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators. ArXiv preprint arXiv:1608.07647 (2016)
Averkov, G., Basu, A.: Lifting properties of maximal lattice-free polyhedra. Math. Program. 154(1–2), 81–111 (2015)
Averkov, G., Basu, A., Paat, J.: Approximation of corner polyhedra with families of intersection cuts. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 51–62. Springer (2017)
Awate, Y., Cornuéjols, G., Guenin, B., Tunçel, L.: On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs. Math. Program. 150(2), 459–489 (2015)
Balas, E.: Intersection cuts–a new type of cutting planes for integer programming. Oper. Res. 19, 19–39 (1971)
Balas, E.: Facets of the knapsack polytope. Math. Program. 8, 146–164 (1975)
Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)
Balas, E., Bonami, P.: New variants of lift-and-project cut generation from the LP tableau: open source implementation and testing. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 89–103. Springer (2007)
Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed integer 0–1 programs. Math. Program. 58, 295–324 (1993)
Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Oper. Res. Lett. 19, 1–9 (1996)
Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Manage. Sci. 42(9), 1229–1246 (1996)
Balas, E., Jeroslow, R.: Strenghtening cuts for mixed integer programs. Eur. J. Oper. Res. 4, 224–234 (1980)
Balas, E., Margot, F.: Generalized intersection cuts and a new cut generating paradigm. Math. Program. 137(1), 19–35 (2013)
Balas, E., Perregaard, M.: Lift-and-project for mixed 0–1 programming: recent progress. Discrete Appl. Math. 123, 129–154 (2002)
Balas, E., Zemel, E.: Facets of knapsack polytope from minimal covers. SIAM J. Appl. Math. 34, 119–148 (1984)
Basu, A., Bonami, P., Cornuéjols, G., Margot, F.: Experiments with two-row cuts from degenerate tableaux. INFORMS J. Comput. 23(4), 578–590 (2011)
Basu, A., Bonami, P., Cornuéjols, G., Margot, F.: On the relative strength of split, triangle and qudrilateral cuts. Math. Program. 126, 281–314 (2011)
Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces. Math. Oper. Res. 35, 704–720 (2010)
Basu, A., Conforti, M., Di Summa, M.: A geometric approach to cut-generating functions. Math. Program. 151(1), 153–189 (2015)
Basu, A., Conforti, M., Di Summa, M.: Optimal cutting planes from the group relaxations. ArXiv preprint arXiv:1710.07672 (2017)
Basu, A., Cornuéjols, G., Köppe, M.: Unique minimal liftings for simplicial polytopes. Math. Oper. Res. 37(2), 346–355 (2012)
Basu, A., Cornuéjols, G., Margot, F.: Intersection cuts with infinite split rank. Math. Oper. Res. 37(1), 21–40 (2012)
Basu, A., Cornuéjols, G., Molinaro, M.: A probabilistic analysis of the strength of the split and triangle closures. In: IPCO, pp. 27–38. Springer (2011)
Basu, A., Hildebrand, R., Köppe, M.: Equivariant perturbation in Gomory and Johnson’s infinite group problem. I. The one-dimensional case. Math. Oper. Res. 40(1), 105–129 (2014)
Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation I: foundations and taxonomy. 4OR 14(1), 1–40 (2016)
Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation II: sufficient conditions for extremality, sequences, and algorithms. 4OR 14(2), 107–131 (2016)
Basu, A., Hildebrand, R., Koppe, M., Molinaro, M.: A \((k+1)\)-slope theorem for the \(k\)-dimensional infinite group relaxation. SIAM J. Optim. 23(2), 1021–1040 (2013)
Basu, A., Hildebrand, R., Molinaro, M.: Minimal cut-generating functions are nearly extreme. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 202–213. Springer (2016)
Basu, A., Paat, J.: Operations that preserve the covering property of the lifting region. SIAM J. Optim. 25(4), 2313–2333 (2015)
Basu, A., Hildebrand, R., Köppe, M.: Equivariant perturbation in gomory and johnson’s infinite group problem–III: foundations for the \(k\)-dimensional case with applications to \(k=2\). Math. Program. 163(1), 301–358 (2017)
Bell, D.F., Shapiro, J.F.: A convergent duality theory for integer programming. Oper. Res. 25, 419–434 (1977)
Benchetrit, Y., Fiorini, S., Huynh, T., Weltge, S.: Characterizing polytopes in the 0/1-cube with bounded chvátal-gomory rank. Math. Oper. Res. (2018). https://doi.org/10.1287/moor.2017.0880
Bienstock, D., Zuckerberg, M.: Subset algebra lift operators for 0–1 integer programming. SIAM J. Optim. 15(1), 63–95 (2004)
Bodur, M., Dash, S., Günlük, O., Luedtke, J.: Strengthened benders cuts for stochastic integer programs with continuous recourse. INFORMS J. Comput. 29(1), 77–91 (2017)
Bodur, M., Dash, S., Günlük, O.: Cutting planes from extended LP formulations. Math. Program. 161(1–2), 159–192 (2017)
Bodur, M., Del Pia, A., Dey, S.S., Molinaro, M., Pokutta, S.: Aggregation-based cutting-planes for packing and covering integer programs. Math. Program. (2017). https://doi.org/10.1007/s10107-017-1192-x
Bodur, M., Del Pia, A., Dey, S.S., Molinaro, M.: Lower bounds on the lattice-free rank for packing and covering integer programs. ArXiv preprint arXiv:1710.00031 (2017)
Bonami, P.: On optimizing over lift-and-project closures. Math. Program. Comput. 4(2), 151–179 (2012)
Bonami, P., Lodi, A., Zarpellon, G.: Learning a classification of mixed-integer quadratic programming problems. http://cerc-datascience.polymtl.ca/wp-content/uploads/2018/01/Technical-Report_DS4DM-2017-013.pdf (2017). Accessed 1 Feb 2018
Bonami, P., Margot, F.: Cut generation through binarization. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 174–185. Springer (2014)
Bonami, P., Minoux, M.: Using rank-1 lift-and-project closures to generate cuts for 0–1 MIPs, a computational investigation. Discrete Optim. 2(4), 288–307 (2005)
Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints. Math. Oper. Res. 34, 538–546 (2009)
Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. OUP, Oxford (2013)
Cadoux, F.: Computing deep facet-defining disjunctive cuts for mixed-integer programming. Math. Program. 122(2), 197–223 (2010)
Caprara, A., Fischetti, M.: \(\{ 0,\frac{1}{2} \}\)–Chvátal-Gomory cuts. Math. Program. 74, 221–235 (1996)
Carøe, C.C.: Decomposition in Stochastic Integer Programming. Ph.D. thesis, Institute of Mathematical Sciences, Department of Operations Research, University of Copenhagen, Denmark (1998)
Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: SODA, pp. 106–115 (2000)
Chandrasekaran, K., Végh, L.A., Vempala, S.S.: The cutting plane method is polynomial for perfect matchings. Math. Oper. Res. 41(1), 23–48 (2016)
Chen, B., Küçükyavuz, S., Sen, S.: Finite disjunctive programming characterizations for general mixed-integer linear programs. Oper. Res. 59(1), 202–210 (2011)
Chen, B., Küçükyavuz, S., Sen, S.: A computational study of the cutting plane tree algorithm for general mixed-integer linear programs. Oper. Res. Lett. 40(1), 15–19 (2012)
Cheung, K.K.H.: Computation of the lasserre ranks of some polytopes. Math. Oper. Res. 32(1), 88–94 (2007)
Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114(115), 455–499 (1989)
Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4(4), 305–337 (1973)
Coleman, T.F.: Large Sparse Numerical Optimization, volume 165 of Lecture Notes in Computer Science, vol. 165. Springer, Berlin (1984)
Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-generating functions and s-free sets. Math. Oper. Res. 40(2), 276–391 (2014)
Conforti, M., Cornuéjols, G., Zambelli, G.: A geometric perspective on lifting. Oper. Res. 59, 569–577 (2009)
Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Berlin (2012)
Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y.: Reverse split rank. Math. Program. 154(1–2), 273–303 (2015)
Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y., Grappe, R.: Reverse Chvátal-Gomory rank. SIAM J. Discrete Math. 29(1), 166–181 (2015)
Conforti, M., Wolsey, L.A.: “Facet” Separation with One Linear Program. Technical report, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) (2016)
Coniglio, S., Tieves, M.: On the generation of cutting planes which maximize the bound improvement. In: Bampis, E. (ed.) Experimental Algorithms, pp. 97–109. Springer, Cham (2015)
Cook, W.: Cutting-plane proofs in polynomial space. Math. Program. 47(1–3), 11–18 (1990)
Cook, W., Dash, S.: On the matrix-cut rank of polyhedra. Math. Oper. Res. 26(1), 19–30 (2001)
Cook, W., Dash, S., Fukasawa, R., Goycoolea, M.: Numerically safe gomory mixed-integer cuts. INFORMS J. Comput. 21(4), 641–649 (2009)
Cook, W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Math. Program. 58, 155–174 (1990)
Cook, W., Koch, T., Steffy, D.E., Wolter, K.: A hybrid branch-and-bound approach for exact rational mixed-integer programming. Math. Program. Comput. 5(3), 305–344 (2013)
Cornuéjols, G.: Revival of the Gomory cuts in the 1990’s. Ann. Oper. Res. 149, 63–66 (2007)
Cornuéjols, G., Dawande, M.: A class of hard small 0–1 programs. INFORMS J. Comput. 11, 205–210 (1999)
Cornuéjols, G., Lemaréchal, C.: A convex-analysis perspective on disjunctive cuts. Math. Program. 106(3), 567–586 (2006)
Cornúejols, G., Li, Y.: Elementary closures for integer programs. Oper. Res. Lett. 28, 1–8 (2001)
Cornuéjols, G., Li, Y.: On the rank of mixed 0–1 polyhedra. Math. Program. 91, 391–397 (2002)
Cornuéjols, G., Li, Y., Vandenbussche, D.: K-cuts: a variation of gomory mixed integer cuts from the LP tableau. INFORMS J. Comput. 15, 385–396 (2003)
Cornuéjols, G., Margot, F., Nannicini, G.: On the safety of gomory cut generators. Math. Program. Comput. 5(4), 345–395 (2013)
Cornuéjols, G., Michini, C., Nannicini, G.: How tight is the corner relaxation? Insights gained from the stable set problem. Discrete Optim. 9(2), 109–121 (2012)
Cornuéjols, G., Lee, D.L.: On some polytopes contained in the 0, 1 hypercube that have a small Chvátal rank. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 300–311. Springer (2016)
Cornuéjols, G., Molinaro, M.: A 3-slope theorem for the infinite relaxation in the plane. Math. Program. 142(1), 83–105 (2013)
Crowder, H., Johnson, E.L., Padberg, M.W.: Solving large scale zero-one linear programming problem. Oper. Res. 31, 803–834 (1983)
Dash, S.: Exponential lower bounds on the lengths of some classes of branch-and-cut proofs. Naval Res. Logist. 30, 678–700 (2005)
Dash, S., Dey, S.S., Günlük, O.: Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra. Math. Program. 135(1–2), 221–254 (2012)
Dash, S., Goycoolea, M.: A heuristic to generate rank-1 GMI cuts. Math. Program. Comput. 2(3–4), 231–257 (2010)
Dash, S., Goycoolea, M., Günlük, O.: Two-step MIR inequalities for mixed integer programs. INFORMS J. Comput. 22(2), 236–249 (2010)
Dash, S., Günlük, O.: Valid inequalities based on simple mixed-integer sets. Math. Program. 105(1), 29–53 (2006)
Dash, S., Günlük, O.: On mixing inequalities: rank, closure, and cutting-plane proofs. SIAM J. Optim. 20(2), 1090–1109 (2009)
Dash, S., Günlük, O.: On t-branch split cuts for mixed-integer programs. Math. Program. 141(1–2), 591–599 (2013)
Dash, S., Günlük, O., Molinaro, M.: On the relative strength of different generalizations of split cuts. Discrete Optim. 16, 36–50 (2015)
Dash, S., Günlük, O., Vielma, J.P.: Computational experiments with cross and crooked cross cuts. INFORMS J. Comput. 26(4), 780–797 (2014)
Dash, S.: Mixed integer rounding cuts and master group polyhedra. Comb. Optim. Methods Appl. 31, 1–32 (2011)
Dash, S., Dey, S.S., Günlük, O.: On mixed-integer sets with two integer variables. Oper. Res. Lett. 39(5), 305–309 (2011)
Del Pia, A., Weismantel, R.: On convergence in mixed integer programming. Math. Program. 135, 397–412 (2012)
Del Pia, A.: On the rank of disjunctive cuts. Math. Oper. Res. 37(2), 372–378 (2012)
Dey, S.S.: A note on the split rank of intersection cuts. Math. Program. 130(1), 107–124 (2011)
Dey, S.S., Iroume, A., Molinaro, M.: Some lower bounds on sparse outer approximations of polytopes. Oper. Res. Lett. 43(3), 323–328 (2015)
Dey, S.S., Iroume, A., Wang, G.: The strength of multi-row aggregation cuts for sign-pattern integer programs. ArXiv preprint arXiv:1711.06963 (2017)
Dey, S.S., Lodi, A., Wolsey, L.A., Tramontani, A.: Experiments with two row tableau cuts. In: Eisenbrand, F., Shepherd, B. (eds.) Proceedings 14th Conference on Integer Programming and Combinatorial Optimization, pp. 424–437. Springer (2010)
Dey, S.S., Louveaux, Q.: Split rank of triangle and quadrilateral inequalities. Math. Oper. Res. 36(3), 432–461 (2011)
Dey, S.S., Molinaro, M., Wang, Q.: Analysis of sparse cutting planes for sparse MILPs with applications to stochastic MILPs. Math. Oper. Res 43(1), 304–332 (2018)
Dey, S.S., Molinaro, M., Wang, Q.: Approximating polyhedra with sparse inequalities. Math. Program. 154, 329–352 (2015)
Dey, S.S., Richard, J.-P.P.: Facets of the two-dimensional infinite group problems. Math. Oper. Res. 33, 140–166 (2008)
Dey, S.S., Richard, J.-P.P.: Relations between facets of low-and high-dimensional group problems. Math. Program. 123(2), 285–313 (2010)
Dey, S.S., Richard, J.-P.P., Li, Y., Miller, L.A.: On the extreme inequalities of infinite group problems. Math. Program. 121, 145–170 (2010)
Dey, S.S., Wolsey, L.A.: Composite lifting of group inequalities and an application to two-row mixing inequalities. Discrete Optim. 7, 256–268 (2010)
Dey, S.S., Wolsey, L.A.: Constrained infinite group relaxations of MIPs. SIAM J. Optim. 20, 2890–2912 (2010)
Dey, S.S., Wolsey, L.A.: Two row mixed-integer cuts via lifting. Math. Program. 124(1–2), 143–174 (2010)
Espinoza, D.: Computing with multiple-row Gomory cuts. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) Proceedings 13th Conference on Integer Programming and Combinatorial Optimization, pp. 214–224. Springer (2008)
Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Math. Program. 110, 3–20 (2007)
Fischetti, M., Salvagnin, D.: A relax-and-cut framework for gomory mixed-integer cuts. Math. Program. Comput. 3(2), 79–102 (2011)
Fukasawa, R., Goycoolea, M.: On the exact separation of mixed integer knapsack cuts. Math. Program. 128(1–2), 19–41 (2011)
Gentile, C., Ventura, P., Weismantel, R.: Mod-2 cuts generation yields the convex hull of bounded integer feasible sets. SIAM J. Discrete Math. 20(4), 913–919 (2006)
Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Serrano, F., Shinano, Y., Viernickel, J.M., Vigerske, S., Weninger, D., Witt, J.T., Witzig, J.: The SCIP optimization suite 5.0. Technical Report 17-61, ZIB, Takustr.7, 14195 Berlin (2017)
Goemans, M.X.: Worst-case comparison of valid inequalities for the TSP. Math. Program. 69, 335–349 (1995)
Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64, 275–278 (1958)
Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-2597, RAND Corporation (1960)
Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra Appl. 2, 341–375 (1969)
Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, part I. Math. Program. 3, 23–85 (1972)
Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, part II. Math. Program. 3, 359–389 (1972)
Gomory, R.E., Johnson, E.L.: T-space and cutting planes. Math. Program. 96, 341–375 (2003)
Gomory, R.E., Johnson, E.L., Evans, L.: Corner polyhedra and their connection with cutting planes. Math. Program. 96, 321–339 (2003)
Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted flow cover inequalities for mixed 0–1 integer programs. Math. Program. 85, 439–467 (1999)
Guerrero-Garćia, P.: Range-Space Methods for Sparse Linear Programs. Ph.D. thesis, Department of Applied Mathematics, University of Malaga, Spain (2002)
Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90, 429–457 (2001)
Guzelsoy, M., Ralphs, T.K.: Duality for mixed-integer linear programs. Int. J. Oper. Res. 4(3), 118–137 (2007)
Hammer, P.L., Johnson, E.L., Peled, U.N.: Facet of regular 0–1 polytopes. Math. Program. 8(1), 179–206 (1975)
He, H., Daumé III, H., Eisner, J.: Learning to search in branch-and-bound algorithms. In: Proceedings of the 27th International Conference on Neural Information Processing Systems Volume 2, NIPS’14, pp. 3293–3301. MIT Press, Cambridge, MA, USA (2014)
He, Q., Ahmed, S., Nemhauser, G.L.: A probabilistic comparison of split and type 1 triangle cuts for two-row mixed-integer programs. SIAM J. Optim. 21(3), 617–632 (2011)
Hoffman, K.L., Padberg, M.: Improving LP-representation of zero-one linear programs for branch-and-cut. ORSA J. Comput. 3, 121–134 (1991)
Hutter, F., Hoos, H. H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 7th International Conference, CPAIOR 2010, Bologna, Italy, June 14–18, 2010. Proceedings, pp. 186–202 (2010)
Jeroslow, R.: Cutting-plane theory: algebraic methods. Discrete Math. 23(2), 121–150 (1978)
Jeroslow, R.G.: Minimal inequalities. Math. Program. 17(1), 1–15 (1979)
Johnson, E.L.: On the group problem for mixed integer programming. Math. Program. Study 2, 137–179 (1974)
Johnson, E.L.: On the group problem and a subadditive approach to integer programming. Ann. Discrete Math. 5, 97–112 (1979)
Johnson, E.L.: Characterization of facets for multiple right-hand side choice linear programs. Math. Program. Study 14, 112–142 (1981)
Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P.: Progress in linear programming-based algorithms for integer programming: an exposition. INFORMS J. Comput. 12, 2–23 (2000)
Johnson, E.L., Padberg, M.W.: Degree-two inequalities, clique facets and biperfect graphs. Ann. Discrete Math. 16, 169–187 (1982)
Khalil, E.B., Bodic, P.L., Song, L., Nemhauser, G.L., Dilkina, B.: Learning to branch in mixed integer programming. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 724–731. AAAI Press (2016)
Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H.D., Ralphs, T.K., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011)
Köppe, M., Zhou, Y.: An electronic compendium of extreme functions for the Gomory-Johnson infinite group problem. Oper. Res. Lett. 43(4), 438–444 (2015)
Köppe, M., Zhou, Y.: New computer-based search strategies for extreme functions of the Gomory-Johnson infinite group problem. Math. Program. Comput. 9(3), 419–469 (2017)
Köppe, M., Zhou, Y.: On the notions of facets, weak facets, and extreme functions of the Gomory–Johnson infinite group problem. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 330–342. Springer (2017)
Kruber, M., Lübbecke, M.E., Parmentier, A.: Learning when to use a decomposition. In: Salvagnin, D., Lombardi, M. (eds.) Integration of AI and OR Techniques in Constraint Programming, pp. 202–210. Springer International Publishing, Cham (2017)
Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations for the 0/1 lasserre hierarchy. Math. Oper. Res. 42, 135–143 (2017)
Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)
Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)
Lebair, T.M., Basu, A.: Approximation of minimal functions by extreme functions. ArXiv preprint arXiv:1708.04344 (2017)
Letchford, A.N., Lodi, A.: Strengthening Chvátal-Gomory cuts and Gomory fractional cuts. Oper. Res. Lett. 30(2), 74–82 (2002)
Li, Y., Richard, J.-P.P.: Cook, Kannan and Schrijver’s example revisited. Discrete Optim. 5, 724–734 (2008)
Lodi, A., Pesant, G., Rousseau, L.-M.: On counting lattice points and Chvátal-Gomory cutting planes. In: Achterberg, T., Beck, J.C. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 131–136. Springer, Berlin (2011)
Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236 (2017)
Louveaux, Q., Poirrier, L.: An algorithm for the separation of two-row cuts. Math. Program. 143(1–2), 111–146 (2014)
Lovász, L.: Geometry of numbers and integer programming. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developments and Applications, pp. 177–210. Kluwer, Dordrecht (1989)
Lovász, L., Schirjver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)
Marchand, H., Martin, A., Weismantel, R., Wolsey, L.A.: Cutting planes in integer and mixed integer programming. Discrete Appl. Math. 123, 397–446 (2002)
Marchand, H., Wolsey, L.A.: The 0–1 knapsack problem with a single continuous variable. Math. Program. 85, 15–33 (1999)
Margot, F.: Testing cut generators for mixed-integer linear programming. Math. Program. Comput. 1(1), 69–95 (2009)
Mastrolilli, M.: High degree sum of squares proofs, Bienstock–Zuckerberg hierarchy and CG cuts. In: Eisenbrand, F., Könemann, J. (eds) Integer Programming and Combinatorial Optimization—19th International Conference, IPCO 2017, Waterloo, ON, Canada, June 26–28, 2017, Proceedings, volume 10328 of Lecture Notes in Computer Science, pp. 405–416. Springer (2017)
Miller, L.A., Li, Y., Richard, J.-P.P.: New inequalities for finite and infinite group problems from approximate lifting. Naval Res. Logist. 55(2), 172–191 (2008)
Molinaro, M.: Understanding the Strength of General-Purpose Cutting Planes. Ph.D. thesis, Carnegie Mellon University (2013)
Morán, D.A., Dey, S.S., Vielma, J.P.: A strong dual for conic mixed-integer programs. SIAM J. Optim. 22(3), 1136–1150 (2012)
Nannicini, G., Belotti, P., Lee, J., Linderoth, J., Margot, F., Wächter, A.: A probing algorithm for MINLP with failure prediction by SVM. In: Achterberg, T., Beck, J.C. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 154–169. Springer, Berlin (2011)
Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)
Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0–1 mixed integer programs. Math. Program. 46, 379–390 (1990)
Neto, J.: A simple finite cutting plane algorithm for integer programs. Oper. Res. Lett. 40(6), 578–580 (2012)
Owen, J.H., Mehrotra, S.: A disjunctive cutting plane procedure for general mixed-integer linear programs. Math. Program. 89(3), 437–448 (2001)
Padberg, M.W., Van Roy, T.J., Wolsey, L.A.: Valid linear inequalities for fixed charge problems. Oper. Res. 33, 842–861 (1985)
Saunders, M.A., Wright, M.H., Gill, P.E., Murray, W.: Sparse matrix methods in optimization. SIAM J. Sci. Stat. Comput. 5, 562–589 (1984)
Pia, A.D., Wagner, C., Weismantel, R.: A probabilistic comparison of the strength of split, triangle, and quadrilateral cuts. Oper. Res. Lett. 39(4), 234–240 (2011)
Pokutta, S., Schulz, A.S.: On the rank of cutting-plane proof systems. In: IPCO, pp. 450–463. Springer (2010)
Pokutta, S., Stauffer, G.: Lower bounds for the Chvátal-Gomory rank in the 0/1 cube. Oper. Res. Lett. 39(3), 200–203 (2011)
Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb. Log. 62(3), 981–998 (1997)
Richard, J.-P.P., Dey, S.S.: The Group-theoretic Approach in Mixed Integer Programming, Chapter 19. Springer, Berlin (2010)
Richard, J.-P.P., Li, Y., Miller, L.A.: Valid inequalities for MIPs and group polyhedra from approximate liftings. Math. Program. 118, 253–277 (2009)
Rothvoß, T.: The Lasserre hierarchy in approximation algorithms. Lecture Notes for the MAPSP. Tutorial. https://sites.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf (2013). Accessed 1 Feb 2018
Rothvoß, T., Sanità, L.: 0/1 polytopes with quadratic Chvátal rank. Oper. Res. 65(1), 212–220 (2017)
Sanjeevi, S., Kianfar, K.: Mixed n-step MIR inequalities: facets for the n-mixing set. Discrete Optim. 9(4), 216–235 (2012)
Schrijver, A.: On cutting planes. Ann. Discrete Math. 9, 291–296 (1980). Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part II
Sen, S., Higle, J.: The C3 theorem and a D2 algorithm for large scale stochastic mixed-integer programming: set convexification. Math. Program. 104(1), 1–20 (2005)
Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Optim. 3, 411–430 (1990)
Sherali, H.D., Adams, W.P.: A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discr. Appl. Math. 52, 83–106 (1994)
Sherali, H.D., Smith, J.C., Adams, W.P.: Reduced first-level representations via the reformulation-linearization technique: results, counterexamples, and computations. Discr. Appl. Math. 101, 247–267 (2000)
Singh, M., Talwar, K.: Improving integrality gaps via Chvátal–Gomory rounding. In: APPROX-RANDOM, pp. 366–379. Springer (2010)
Van Roy, T.J., Wolsey, L.A.: Valid inequalities for mixed 0–1 programs. Discrete Appl. Math. 14(2), 199–213 (1986)
Walter, M.: Sparsity of lift-and-project cutting planes. In: Operations Research Proceedings 2012, pp. 9–14. Springer (2014)
Weismantel, R.: On the 0/1 knapsack polytope. Math. Program. 77(3), 49–68 (1997)
Wesselmann, F., Suhl, U.H.: Implementing cutting plane management and selection techniques. Technical report, University of Paderborn, December (2012)
Wolsey, L.A.: Faces for a linear inequality in 0–1 variables. Math. Program. 8, 165–178 (1975)
Wolsey, L.A.: Submodularity and valid inequalities in capacitated fixed charge networks. Oper. Res. Lett. 8(3), 119–124 (1989)
Wolsey, L.A.: Integer Programming. Wiley, New York (1998)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-MIP: automated algorithm configuration and selection for mixed-integer programming. In: RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial Intelligence (IJCAI) (2011)
Yildiz, S., Cornuéjols, G.: Cut-generating functions for integer variables. Math. Oper. Res. 41(4), 1381–1403 (2016)
Zanette, A., Fischetti, M., Balas, E.: Lexicography and degeneracy: Can a pure cutting plane algorithm work? Math. Program. 130(1), 153–176 (2011)
Zemel, E.: Lifting the facets of zero-one polytopes. Math. Program. 15, 268–277 (1978)
Zhang, M., Küçükyavuz, S.: Finitely convergent decomposition algorithms for two-stage stochastic pure integer programs. SIAM J. Optim. 24(4), 1933–1951
Acknowledgements
We would like to thank Tobias Achterberg, Domenico Salvagnin and Roland Wunderling for their help with preparing this manuscript. We would also like to thank anonymous reviewers for their feedback that greatly improved the presentation of this manuscript. Santanu S. Dey would like to acknowledge the support of NSF CMMI Grant # 1562578. Marco Molinaro would like to acknowledge the support of CNPq grants Universal #431480/2016-8 and Bolsa de Produtividade em Pesquisa #310516/2017-0.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dey, S.S., Molinaro, M. Theoretical challenges towards cutting-plane selection. Math. Program. 170, 237–266 (2018). https://doi.org/10.1007/s10107-018-1302-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-018-1302-4