Abstract
In the present paper, we propose a new method to inexpensively determine a suitable value of the regularization parameter and an associated approximate solution, when solving ill-conditioned linear system of equations with multiple right-hand sides contaminated by errors. The proposed method is based on the symmetric block Lanczos algorithm, in connection with block Gauss quadrature rules to inexpensively approximate matrix-valued function of the form \(W^Tf(A)W\), where \(W\in {\mathbb {R}}^{n\times k}\), \(k\ll n\), and \(A\in {\mathbb {R}}^{n\times n}\) is a symmetric matrix.
Similar content being viewed by others
References
Ahmad, G.F., Brooks, D.H., MacLeod, R.S.: An admissible solution approach to inverse electrocardiography. Ann. Biomed. Eng. 26, 278–292 (1998)
Baglama, James: Dealing with linear dependence during the iterations of the restarted block Lanczos methods. Numer. Algorithm. 25, 23–36 (2000)
Brianzi, P., Di Bendetto, F., Estatico, C.: Improvement of space-invariant image deblurring by preconditioned Landweber iterations. SIAM J. Sci. Comput. 30, 1430–1458 (2008)
Björck, Å.A.: A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations. BIT 18, 659–670 (1988)
Bentbib, A.H., El Guide, M., Jbilou, K., Reichel, L.: A global Lanczos method for image restoration. J. Comput. Math. 300, 233–244 (2016)
Bouhamidi, A., Jbilou, K., Reichel, L., Sadok, H.: An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure. Linear Algebra Appl. 434(7), 1677–1688 (2011)
Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for the regularization of least squares problems. Numer. Algorithm. 51, 61–76 (2009)
Calvetti, D., Golub, G.H., Reichel, L.: Estimation of the L-curve via Lanczos bidiagonalization. BIT 39, 603–619 (1999)
Calvetti, D., Hansen, P.C., Reichel, L.: L-curve curvature bounds via Lanczos bidiagonalization. Electron. Trans. Numer. Anal. 14, 134–149 (2002)
Calvetti, D., Lewis, B., Reichel, L., Sgallari, F.: Tikhonov regularization with nonnegativity constraint. Electron. Trans. Numer. Anal. 18, 153–173 (2004)
Calvetti, D., Reichel, L.: Tikhonov regularization with a solution constraint. SIAM J. Sci. Comput 26, 224–239 (2004)
Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT 43(2), 263–283 (2003)
Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)
Eldn, L.: Algorithms for the regularization of ill-conditioned least squares problems. BIT 17, 134–145 (1977)
Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Block Gauss and anti-Gauss quadrature with application to networks. SIAM J. Matrix Anal. Appl. 34(4), 1655–1684 (2013)
Faber, T.L., Raghunath, N., Tudorascu, D., Votaw, J.R.: Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations. Phys. Med. Biol. 54(3), 797–811 (2009)
Golub, G.H., Luk, F.T., Overton, M.L.: A block Lanczos method for computing the singular values and corresponding singular vectors of a matrix. ACM Trans. Math. Softw. 7, 149–169 (1981)
el Guennouni, A., Jbilou, K., Sadok, H.: The block Lanczos method for linear systems with multiple right-hand sides. Appl. Numer. Math. 23(51), 243–256 (2004)
el Guennouni, A., Jbilon, K., Sadok, H.: A block BiCGSTAB algorithm for multiple linear systems. Electron. Trans. Numer. Anal. 16, 129–142 (2003)
Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Griffiths, D.F., Watson, G.A. (eds.) Numerical Analysis 1993, pp. 105–156. Longman, Essex (1994)
Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press, Princeton (2010)
Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind. Pitman, Boston (1984)
Golub, G.H., von Matt, U.: Quadratically constrained least squares and quadratic problems. Numer. Math. 59, 561–580 (1991)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Hanke, M.: On Lanczos based methods for the regularization of discrete ill-posed problems. BIT 41(5), 1008–1018 (2001)
Hansen, P.C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algorithm. 46, 189–194 (2007)
Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)
Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)
Jbilou, K., Sadok, H., Tinzefte, A.: Oblique projection methods for linear systems with multiple right-hand sides. Electron. Trans. Numer. Anal. 20, 119–138 (2005)
Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)
Kamm, J., Nagy, J.G.: Kronecker product and SVD approximations in image restoration. Linear Algebra Appl. 284, 177–192 (1998)
Kamm, J., Nagy, J.G.: Kronecker product approximations for restoration image with reflexive boundary conditions. SIAM J. Matrix Anal. Appl. 25, 829–841 (2004)
Laurie, D.P.: Anti-Gaussian quadrature formulas. Math. Comp. 65, 739–747 (1996)
McNown, S.R., Hunt, B.R.: Approximate shift-invariance by warping shift-variant systems. In: SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation, pp. 156–167. International Society for Optics and Photonics (1994)
Nagy, J.G., Ng, M.K., Perrone, L.: Kronecker product approximation for image restoration with reflexive boundary conditions. SIAM J. Matrix Anal. Appl. 25, 829–841 (2004)
Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Soft. 8, 43–71 (1982)
Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithm. 63, 65–87 (2013)
Rojas, M., Sorensen, D.C.: A trust-region approach to regularization of large-scale discrete forms of ill-posed problems. SIAM J. Sci. Comput. 23, 1842–1860 (2002)
Rojas, M., Steihaug, T.: An interior-point trust-region-based method for large-scale non-negative regularization. Inverse Probl. 18, 1291–1307 (2002)
Toutounian, F., Karimi, S.: Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides. Appl. Math. Comput. 178, 452–460 (2006)
Van Loan, C.F., Pitsianis, N.P.: Approximation with Kronecker products. In: Moonen, M.S., Golub, G.H. (eds.) Linear Algebra for Large Scale and Real Time Applications, pp. 293–314. Kluwer, Dordrecht (1993)
Acknowledgments
We would like to thank the referee for the pertinent and useful comments towards the improvement of our manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bentbib, A.H., Guide, M.E. & Jbilou, K. The block Lanczos algorithm for linear ill-posed problems. Calcolo 54, 711–732 (2017). https://doi.org/10.1007/s10092-016-0206-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10092-016-0206-z