[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Performance evaluation of 100 and 200-Gb/s WDM PM-QPSK transmission systems: tolerance analysis to the optical link impairments according to the optical carrier shape

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Polarization-multiplexing quadrature phase shift keying (PM-QPSK) has become a key ingredient in the design of 100 and 200-Gb/s dense wavelength-division multiplexed (DWDM) networks. The performance of the system using these formats varies according to the shape of the pulses employed by the optical carrier: non-return to zero (NRZ), return to zero (RZ) or carrier-suppressed return to zero (CSRZ). In this paper, we analyse the tolerance of PM-QPSK to linear and nonlinear optical impairments, including amplified spontaneous emission (ASE) noise, crosstalk, distortion by optical filtering, chromatic dispersion (CD), polarization mode dispersion (PMD) and fibre Kerr nonlinearities. The simulation results show that RZ formats with a low-duty cycle have a higher tolerance to CD, PMD and intrachannel nonlinearities due to the reduction of pulse-to-pulse interaction. Conversely, the PM–NRZ-QPSK format has a higher spectral efficiency (SE) than other options and shows better tolerance to filtering distortion and CD in filterless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. White paper. Cisco Visual Networking Index: Forecast and Methodology, 2016–2021. http://www.cisco.com/c/en/us/ solutions/collateral/service-provider/ip-ngn-ip-next-generationnetwork/white_paper_c11-481360.html. Accessed June 2017

  2. Tomkos, I., Azodolmolky, S., Solé-Pareta, J., Careglio, D., Palkopoulou, E.: A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges. Proc. IEEE 102, 1317–1337 (2014)

    Article  Google Scholar 

  3. Bayvel, P., Maher, R., Xu, T., Liga, G., Shevchenko, N.A., Lavery, D., Alvarado, A., Killey, R.I.: Maximizing the optical network capacity. Philos. Trans. A 374, 20140440–20140441 (2016)

    Article  ADS  Google Scholar 

  4. Horche, P.R., Carmina, D.R.C., Martin, A.M.: Interaction of semiconductor laser chirp with fiber dispersion: impact on WDM directly modulated system performance. In: International Conference on Advances in Circuits, Electronics and Micro-electronics CENICS 2011, pp. 17–22 (2011)

  5. Agrell, E., Karlsson, M., Chraplyvy, A.R., Richardson, D.J., Krummrich, P.M., Winzer, P., Roberts, K., Fischer, J.K., Savory, S.J., Eggleton, B.J.: Roadmap of optical communications. J. Opt. 18, 063002 (2016)

    Article  ADS  Google Scholar 

  6. Chen, X., Horche, P.R., Minguez, A.M.: Analysis of optical signal impairment induced by different types of optical filters in 40 Gbps DQPSK and 100 Gbps PM-DQPSK systems. Opt. Fiber Technol. 22, 113–120 (2015)

    Article  ADS  Google Scholar 

  7. Roberts, K., Zhuge, Q., Monga, I., Gareau, S., Laperle, C.: Beyond 100 Gb/s: capacity, flexibility, and network optimization [Invited]. IEEE/OSA J. Opt. Commun. Netw. 9, C12–C23 (2017)

    Article  Google Scholar 

  8. Yu, J., Dong, Z., Chien, H.C., Jia, Z., Li, X., Huo, D., Gunkel, M., Wagner, P., Mayer, H., Schippel, A.: Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM With a SE of 4 b/s/Hz. J. Lightwave Technol. 31, 515–522 (2013)

    Article  ADS  Google Scholar 

  9. Chen, X., Horche, P.R., Minguez, A.M.: DPSK signals demodulation based on a multimode fiber with a central dip. In: European Conference on Networks and Optical Communications: 2014, Milano, Italy, pp. 18–22 (2014)

  10. Chen, X., Horche, P.R., Minguez, A.M.: A low-cost alternative scheme to detect a 100 Gbps PM-DQPSK signal. Photon Netw. Commun. 28, 203–213 (2014)

    Article  Google Scholar 

  11. Winzer, P.J.: High-spectral-efficiency optical modulation formats. J. Lightwave Technol. 30, 3824–3835 (2012)

    Article  ADS  Google Scholar 

  12. Chi, N., Zhang, M., Shi, J., Zhao, Y.: Spectrally efficient multi-band visible light communication system based on Nyquist PAM-8 modulation. Photonics Res. 5, 588–595 (2017)

    Article  Google Scholar 

  13. Chen, X., Horche, P.R.: Signal penalties induced by different types of optical filters in 100 Gbps PM-DQPSK based optical networks. Opt. Switch. Netw. 19, 145–154 (2016)

    Article  Google Scholar 

  14. Wang, J., Xie, C., Pan, Z.: Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters. J. Lightwave Technol. 30, 3679–3686 (2012)

    Article  ADS  Google Scholar 

  15. Nguyen, T.H., Peucheret, C.: Kalman filtering for carrier phase recovery in optical offset-QAM Nyquist WDM systems. IEEE Photonics Technol. Lett. 29, 1019–1022 (2017)

    Article  ADS  Google Scholar 

  16. International Telecommunication Union (ITU): G.694.1, spectral grids for WDM applications: DWDM frequency grid, https://www.itu.int/rec/T-REC-G.694.1-201202-I/en

  17. Behrens, C., Makovejs, S., Killey, R.I., et al.: Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission. Opt. Express 19, 12879–12884 (2011)

    Article  ADS  Google Scholar 

  18. Yu, J., Zhou, X.: Multilevel modulations and digital coherent detection. Opt. Fiber Technol. 15, 197–208 (2009)

    Article  ADS  Google Scholar 

  19. Yu, J., Zhou, X., Huang, M.-F., Qian, D., Ji, P.N., Wang, T., Magill, P.: 400 Gb/s (4 × 100 Gb/s) orthogonal PDM-RZ-QPSK DWDM signal transmission over 1040 km SMF-28. Opt. Express 17, 17928–17933 (2009)

    Article  ADS  Google Scholar 

  20. Agrawal, G.P.: Fiber-optic communication systems, 4th edn. Wiley Interscience, New York (2011)

    Google Scholar 

  21. OptiSystem: OptiSystem Overview https://optiwave.com/optisystem-overview/

  22. Mora, M.C., Minguez, A.M., Horche, P.R.: Design of equalized ROADMs devices with flexible bandwidth based on LCoS technology. In: European Conference on Networks and Optical Communications: 2014, Milano, Italy, pp. 41–46 (2014)

  23. Martin-Minguez, A., Horche, P.R.: Design of equalized holographic ROADMs for application in CWDM METRO networks. Opt. Commun. 284, 5055–5061 (2011)

    Article  ADS  Google Scholar 

  24. Tibuleac, S., Filer, M.: Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers. J. Lightwave Technol. 28, 557–598 (2010)

    Article  ADS  Google Scholar 

  25. Wang, Z., Yang, A., Guo, P., Lu, Y., Qiao, Y.: Nonlinearity-tolerant OSNR estimation method based on correlation function and statistical moments. Opt. Fiber Technol. 39, 5–11 (2017)

    Article  ADS  Google Scholar 

  26. Salsi, M., Renaudier, J., Bertran-Pardo, O., Mardoyan, H., Tran, P., Charlet, G., Bigo, S.: 100 Gb/s and beyond for submarine systems. J. Lightwave Technol. 30, 3880–3887 (2012)

    Article  ADS  Google Scholar 

  27. Gordon, J.P., Mollenauer, L.F.: Phase noise in photonic communications systems using linear amplifiers. Opt. Lett. 15, 1351–1353 (1990)

    Article  ADS  Google Scholar 

  28. Yazgan, A., Cavdar, I.H.: Optimum link distance determination for a constant signal to noise ratio in M-ary PSK modulated coherent optical OFDM systems. Telecommun. Syst. 55, 461–470 (2014)

    Article  Google Scholar 

  29. Li, L., Zhang, J., Duan, D., Yin, A.: Analysis modulation formats of DQPSK in WDM-PON system. Optik Int. J. Light Electron Opt. 123, 2050–2055 (2012)

    Article  Google Scholar 

  30. Winzer, P.J., Essiambre, R.J.: Advanced optical modulation formats. Proc. IEEE 94(5), 952–985 (2006)

    Article  Google Scholar 

  31. Gnauck, A.H., Winzer, P.J.: Optical phase-shift-keyed transmission. J. Lightwave Technol. 23, 115–130 (2005)

    Article  ADS  Google Scholar 

  32. Zumba, P., Cabrera, P., Coronel, E.: Chromatic dispersion analysis in a WDM-PON network using FBG compensators. IEEE Latin Am. Trans. 14, 2817–2822 (2016)

    Article  Google Scholar 

  33. Malekiha, M., Tselniker, I., Plant, D.V.: Chromatic dispersion mitigation in long-haul fiber-optic communication networks by sub-band partitioning. Opt. Express 23, 32654–32663 (2015)

    Article  ADS  Google Scholar 

  34. Li, X., Alphones, A., Zhong, W.D.: Investigation of PMD in direct-detection optical OFDM with zero padding. Opt. Express 21, 20851–20856 (2013)

    Article  ADS  Google Scholar 

  35. Tremblay, C.: Passive filterless core networks based on advanced modulation and electrical compensation technologies. Telecommun. Syst. 54, 167–181 (2013)

    Article  Google Scholar 

  36. Horche, P.R., Campos, C.D.R.: Enhanced performance of WDM systems using directly modulated lasers on positive dispersion fibers. Opt. Fiber Technol. 14, 102–108 (2008)

    Article  ADS  Google Scholar 

  37. Gordon, J.P., Kogelnik, H.: PMD fundamentals: polarization mode dispersion in optical fibers. Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000)

    Article  ADS  Google Scholar 

  38. Haro, J., Horche, P.R.: Evolution of PMD with the temperature on installed fiber. Opt. Fiber Technol. 14, 203–213 (2008)

    Article  ADS  Google Scholar 

  39. Seifouri, M., Olyaee, S., Dekamin, M., Karami, R.: Dispersion compensation in optical transmission systems using high negative dispersion chalcogenide/silica hybrid microstructured optical fiber. Opt. Rev. 24, 1–7 (2017)

    Article  Google Scholar 

  40. Ortiz, A.M.: Broadband optical communications using modulated phase: study of the optical signal degradation. Proyecto Fin de Carrera, E.T.S.I. Telecomunicación (UPM), Madrid, Spain (2013)

  41. Agrawal, G.P.: Nonlinear fiber optics, 5th edn. Elsevier Science & Technology, San Diego (2013)

    MATH  Google Scholar 

  42. Amari, A., Dobre, O.A., Venkatesan, R., Kumar, O.S.S., Ciblat, P., Jaouën, Y.: A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems. IEEE Commun. Surv. Tutorials 19, 3097–3113 (2017)

    Article  Google Scholar 

  43. Dar, R., Winzer, P.: Nonlinear Interference Mitigation: Methods and Potential Gain. J. Lightwave Technol. 35, 903–930 (2017)

    Google Scholar 

  44. Winzer, P.J., Essiambre, R.J.: Advanced optical modulation formats. In: Kaminow, I.P., Li, T., Willner, A.E. (eds.) Optical Fiber Telecommunications V B: Systems and Networks, pp. 23–93. Elsevier, Burlington (2008)

    Chapter  Google Scholar 

  45. Ho, K.-P.: Phase-Modulated Optical Communications Systems. Springer, New York (2005)

    Google Scholar 

  46. Kim, H., Winzer, P.J.: Nonlinear phase noise in phase-coded transmission. Opt. Fiber Commun. Conf. 2005 4, 3–5 (2005) (Anaheim, CA)

    Google Scholar 

  47. Alfiad, M.S., Borne, D.V.D., Wuth, T., Kuschnerov, M., Waardt, H.D.: On the Tolerance of 111-Gb/s POLMUX-RZ-DQPSK to Nonlinear Transmission Effects. J. Lightwave Technol. 29, 162–170 (2011)

    Article  ADS  Google Scholar 

  48. Hamza, M.Y., Sarwar, N., Sarwar, N., Yang, S.: Evolution behavior of chirped tan-hyperbolic pulse through single mode fiber in the simultaneous presence of fiber loss, dispersion and self-phase modulation. Telecommun. Syst. 55, 451–459 (2014)

    Article  Google Scholar 

  49. Cheng, K.S., Conradi, J.: Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems. Photonics Technol. Lett. IEEE 14, 98–100 (2002)

    Article  ADS  Google Scholar 

  50. Poggiolini, P., Bosco, G., Carena, A., Curri, V., Forghieri, F.: Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects. Opt. Express 18, 11360–11371 (2010)

    Article  ADS  Google Scholar 

  51. Poggiolini, P.: The GN Model of Non-Linear Propagation in Uncompensated Coherent Optical Systems. J. Lightwave Technol. 30, 3857–3879 (2012)

    Article  ADS  Google Scholar 

  52. Bosco, G., Carena, A., Cigliutti, R., et al.: Performance prediction for WDM PM-QPSK transmission over uncompensated links. In: Optical Fiber Communication Conference, San Diego, CA, pp. 1–3 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paloma R. Horche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Macho, A. & Horche, P.R. Performance evaluation of 100 and 200-Gb/s WDM PM-QPSK transmission systems: tolerance analysis to the optical link impairments according to the optical carrier shape. Opt Rev 25, 663–677 (2018). https://doi.org/10.1007/s10043-018-0463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-018-0463-y

Keywords

Navigation