[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

General approach for video traffic: from modeling to optimization

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a new approach to model video traffic in networks. This approach combines modeling at both scene level and groups of picture (GoP) level using GoP classification, phase-type fitting, and Markov modeling. We illustrate the use of this model in many performance evaluation scenarios: the traffic model is compared with reference models and used to compute loss rate at network buffers, to generate artificial video traffic traces. In addition, an optimization problem is formulated to determine an optimal management scheme for the network buffer resources. Simulated annealing is adapted to solve this optimization problem. Two very rapid heuristics are also proposed for a good approximation of the optimal value. The performance of a buffer fed by multiplexed video sources is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The condition \(\rho _0<1\) is equivalent to (7).

References

  1. Abbessi, W., Nabli, H.: Comparison of computation methods for the steady-state Markov modulated fluid queues. In: Workshop on Performance Evaluation of Communications in Distributed Systems and Web Based Service Architectures. IEEE, Sousse (2009)

  2. Abbessi, W., Nabli, H.: GoP-based fluid Markovian modelling of video traffic. In: International Conference on Communications and Networking (ComNet 2010). Tozeur (2010)

  3. Abbessi, W., Nabli, H.: Performance evaluation of video traffic models. Int. J. Eng. Res. Technol. Proc. PEMWN Conf. 4(4), 88–93 (2015)

    Google Scholar 

  4. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the EM algorithm. Scand. J. Stat. 23, 419–441 (1996)

    MATH  Google Scholar 

  5. Avramova, Z., Vleeschauwer, D.D., Laevens, K., Wittevrongel, S., Bruneel, H.: Modelling H.264/AVC VBR video traffic: comparison of a Markov and a self-similar source model. Telecommun. Syst. 39(2), 91–102 (2008)

    Article  Google Scholar 

  6. Chen, Y., Farley, T., Ye, N.: QoS requirements of network applications on the internet. Inf. Knowl. Syst. Manag. 4(1), 55–76 (2004)

    Google Scholar 

  7. Flynn, M.R.: Fitting human exposure data with the Johnson SB distribution. J. Expo. Sci. Environ. Epidemiol. 16(1), 56–62 (2005)

    Article  Google Scholar 

  8. Golaup, A., Aghvami, H.: A multimedia traffic modeling framework for simulation-based performance evaluation studies. Comput. Netw. 50, 2071–2087 (2006)

    Article  MATH  Google Scholar 

  9. Hlavacs, H., Kotsis, G., Steinkellner, C.: Traffic Source Modeling, Tech. rep. Institute for Appl. Comp. Science and Inf. Systems, University of Vienna, Wien (1999)

    Google Scholar 

  10. Izquierdo, M., Reeves, D.: A survey of statistical source models for variable-bit-rate compressed video. Multimed. Syst. 7(3), 199–213 (1999)

    Article  Google Scholar 

  11. Johnson, N., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1. Wiley, New York (1994)

    MATH  Google Scholar 

  12. Kempken, S., Hasslinger, G., Luther, W.: Parameter estimation and optimization techniques for discrete-time semi-Markov models of H.264/AVC video traffic. Telecommun. Syst. 39(2), 77–90 (2008)

    Article  Google Scholar 

  13. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkeley (1951)

  15. Lazaris, A., Koutsakis, P., Paterakis, M.: A new model for video traffic originating from multiplexed MPEG-4 videoconference streams. Perform. Eval. 65(1), 51–70 (2008)

    Article  Google Scholar 

  16. Li, H., Liu, G., Zhang, Z., Li, Y.: Adaptive scene-detection algorithm for VBR video stream. IEEE Trans. Multimed. 6(4), 624–633 (2004)

    Article  Google Scholar 

  17. Likas, A., Vlassis, N., Verbeek, J.: The global k-means clustering algorithm. Pattern Recognit. 36(2), 451–461 (2003)

    Article  Google Scholar 

  18. Markovich, N.M., Undheim, A., Emstad, P.J.: Classification of slice-based vbr video traffic and estimation of link loss by exceedance. Comput. Netw. 53, 1137–1153 (2009)

    Article  MATH  Google Scholar 

  19. Nabli, H.: Asymptotic solution of stochastic fluid models. Perform. Eval. 57, 121–140 (2004)

    Article  MATH  Google Scholar 

  20. Nabli, H.: Transient and asymptotic analysis of general Markov fluid models. Queueing Syst. 47(3), 283–304 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nabli, H.: Time to stationarity for general Markov fluid models. Int. J. Commun. Syst. 19(3), 249–262 (2006)

    Article  Google Scholar 

  22. Nabli, H., Abbessi, W., Ouerghi, H.: A unified algorithm for finite and infinite buffer content distribution of Markov fluid models. Perform. Eval. 99(C), 37–54 (2016)

    Google Scholar 

  23. Richardson, I.: H.264 and MPEG-4 Video Compression. Video Coding for Next-generation Multimedia. Wiley, New York (2003)

    Book  Google Scholar 

  24. Rose, O.: Statistical properties of MPEG video traffic and their impact on traffic modeling in ATM systems. In: Proceedings of 20th Conference on Local Computer Networks, vol. 20, pp. 397–406 (1995)

  25. Sarkar, U., Ramakrishnan, S., Sarkar, D.: Modeling full-length video using Markov-modulated gamma-based framework. IEEE/ACM Trans. Netw. 11(4), 638–649 (2003)

    Article  Google Scholar 

  26. Seeling, P., Fitzek, F., Reisslein, M.: Video Traces for Network Performance Evaluation. Springer, New York (2006). http://trace.kom.aau.dk/publications

  27. Seeling, P., Reisslein, M.: Video trace evaluation with H.264 video traces. IEEE Commun. Surv. Tutor. 4, 1–24 (2012)

    Google Scholar 

  28. Suri, P., Sharma, K., Kumar, B.: Artificial traffic generation for a multi service network. IJCSNS Int. J. Comput. Sci. Netw. Secur. 7(4), 250–254 (2007)

    Google Scholar 

  29. Tanwir, S., Perros, H., Anjum, B.: A QoS evaluation of video traffic models for H.264 AVC video. In: 5th International Conference on Next Generation Networks and Services (NGNS), Casablanca (2014)

  30. Ycart, B.: Modèles et algorithmes Markoviens. Springer, Berlin (2002)

    MATH  Google Scholar 

  31. Yoo, S., kim, S.: A new multi-level statistical model for variable bit rate MPEG sources over ATM networks and its performance study. Comput. Commun. 24(3–4), 296–307 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wassim Abbessi.

Additional information

Communicated by B. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbessi, W., Nabli, H. General approach for video traffic: from modeling to optimization. Multimedia Systems 25, 177–193 (2019). https://doi.org/10.1007/s00530-018-0595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-018-0595-8

Keywords