[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A new strategy to sustained release of ocular drugs by one-step drug-loaded microcapsule manufacturing in hydrogel punctal plugs

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To design an injectable hyaluronate (HA)-based hydrogel system that contains drug-loaded microcapsules as resorbable plugs to deliver ocular drugs.

Methods

In-situ drug-loaded, core-shell-structured chitosan (CS)@HA microcapsules were fabricated via HA hydrosol collecting in electrospun bead-rich CS fibers under continuous stirring. An injectable and cytocompatible hydrogel system with different degrees of chemical crosslinking maintained viscoelastic and sustained drug release for a long-term period of time at body temperature in vitro.

Results

With the addition of adipic dihydrazide (ADH) or 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride (EDCI), HA hydrosols transited from liquid to solid state at the gel point, with the G′/G″ ratio varying between 1.43 and 5.32 as a function of crosslinker concentration in the hydrogel phase. Ofloxacin (OFL) release from the mechanically mixed hydrosol system (CS-HA-A0-E0) and the micro-encapsulated hydrosol formulation (CS@HA-A0-E0) were respectively over 80% and 51% of the total drug load leaching out within 24 h. As for the drug-mixed hydrogel systems with low (CS-HA-A0.06-E0.15) and high (CS-HA-A0.06-E0.30) crosslinking density, the OFL release rate reached 38.5 and 46.6% respectively, while the micro-encapsulated hydrogel systems with low (CS@HA-A0.06-E0.15) and high (CS@HA-A0.6-E0.30) showed only (11.9 ± 2.7)% and (17.4 ± 3.5)% drug release respectively.

Conclusions

A one-step in-situ drug-capsulizing method is developed to fabricate a resorbable hydrogel punctal plug with extended drug release. The chemistry of the crosslinking reaction involves the formation of highly biocompatible HA derivatives. Thus, the hydrogel can be used directly in the tear drainage canalicular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Patel HA, Patel JK, Patel KN, Patel RR (2010) Ophthalmic drug delivery system—a review. Der Pharmacia Lettre 2:100–115

    CAS  Google Scholar 

  2. Ahmed I (2003) The noncorneal route in ocular drug delivery. In: Ak M (ed) Drugs and the pharmaceutical sciences. Marcel Dekker, New York, pp 335–363

    Google Scholar 

  3. Kass MA, Hodapp E, Gordon M et al (1982) Part I. Patient administration of eyedrops: interview. Ann Ophthalmol 14:775–779

    CAS  PubMed  Google Scholar 

  4. Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12:348–360. doi:10.1208/s12248-010-9183-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kompella UB, Kadam RS, Lee VH (2010) Recent advances in ophthalmic drug delivery. Ther Deliv 1:435–456. doi:10.4155/tde.10.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wei CP, Anderson JA, Leopold I (1978) Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephrine. Invest Ophthalmol Vis Sci 17:315–321

    CAS  PubMed  Google Scholar 

  7. Rautio J, Kumpulainen H, Heimbach T et al (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270. doi:10.1038/nrd2468

    Article  CAS  PubMed  Google Scholar 

  8. Hellberg MR, Ke T-L, Haggard K et al (2004) The hydrolysis of the prostaglandin analog prodrug bimatoprost to 17-phenyl-trinor PGF2α by human and rabbit ocular tissue. J Ocul Pharmacol Ther 19:97–103. doi:10.1089/108076803321637627

    Article  Google Scholar 

  9. Aikawa T, Ito S, Shinohara M et al (2015) A drug formulation using an alginate hydrogel matrix for efficient oral delivery of the manganese porphyrin-based superoxide dismutase mimic. Biomater Sci 3:861–869. doi:10.1039/C5BM00056D

    Article  CAS  PubMed  Google Scholar 

  10. Xi L, Wang T, Zhao F et al (2014) Evaluation of an injectable thermosensitive hydrogel as drug delivery implant for ocular glaucoma surgery. PLoS One 9:e100632. doi:10.1371/journal.pone.0100632

    Article  PubMed  PubMed Central  Google Scholar 

  11. El-Kamel AH (2002) In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm 241:47–55. doi:10.1016/S0378-5173(02)00234-X

    Article  CAS  PubMed  Google Scholar 

  12. Tang J, Li L, Howard CB et al (2015) Preparation of optimized lipid-coated calcium phosphate nanoparticles for enhanced in vitro gene delivery to breast cancer cells. J Mater Chem B 3:6805–6812. doi:10.1039/C5TB00912J

    Article  CAS  Google Scholar 

  13. Liu F, He X, Zhang J et al (2015) Controllable synthesis of polydopamine nanoparticles in microemulsions with pH-activatable properties for cancer detection and treatment. J Mater Chem B 3:6731–6739

    Article  CAS  Google Scholar 

  14. Das S, Suresh PK (2011) Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomedicine 7:242–247. doi:10.1016/j.nano.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  15. Quinteros D, Vicario-de-la-Torre M, Andrés-Guerrero V et al (2014) Hybrid formulations of liposomes and bioadhesive polymers improve the hypotensive effect of the melatonin analogue 5-MCA-NAT in rabbit eyes. PLoS One 9:e110344. doi:10.1371/journal.pone.0110344

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kambhampati SP, Kannan RM (2013) Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther 29:151–165. doi:10.1089/jop.2012.0232

    Article  CAS  PubMed  Google Scholar 

  17. Glisoni RJ, García-Fernández MJ, Pino M et al (2013) β-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr Polym 93:449–457. doi:10.1016/j.carbpol.2012.12.033

    Article  CAS  PubMed  Google Scholar 

  18. Gaudana R, Jwala J, Boddu SHS, Mitra AK (2009) Recent perspectives in ocular drug delivery. Pharm Res 26:1197–1216. doi:10.1007/s11095-008-9694-0

    Article  CAS  PubMed  Google Scholar 

  19. Knight OJ, Lawrence SD (2014) Sustained drug delivery in glaucoma. Curr Opin Ophthalmol 25:112–117. doi:10.1097/ICU.0000000000000031

    Article  PubMed  Google Scholar 

  20. Franca JR, Foureaux G, Fuscaldi LL et al (2014) Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLoS One 9:e95461. doi:10.1371/journal.pone.0095461

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang H-Y, FUJISHIMA H, Toda I et al (1997) Lacrimal punctal occlusion for the treatment of superior limbic keratoconjunctivitis. Am J Ophthalmol 124:80–87

    Article  CAS  PubMed  Google Scholar 

  22. Gupta C, Chauhan A (2011) Ophthalmic delivery of cyclosporine a by punctal plugs. J Control Release 150:70–76. doi:10.1016/j.jconrel.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  23. Rumelt S, Remulla H, Rubin PAD (1997) Silicone punctal plug migration resulting in dacryocystitis and canaliculitis. Cornea 16:377

    Article  CAS  PubMed  Google Scholar 

  24. Han JH, Park JW, Kim SC (2012) Reactive lymphoid hyperplasia of lacrimal canaliculus caused by a silicone plug. Ophthalmic Plast Reconstr Surg 28:e138–e140. doi:10.1097/IOP.0b013e318249d406

    Article  Google Scholar 

  25. Taban M, Chen B, Perry JD (2006) Update on punctal plugs. Compr Ophthalmol Updat 7:205–212

    Google Scholar 

  26. Ye J, Wang C, Su P et al (2010) Biochemically active hydrosol as a means of collecting electrospun microcapsules for drug delivery. J Mater Chem 20:9025–9028. doi:10.1039/C0JM02581J

    Article  CAS  Google Scholar 

  27. State Drug Administration Jinan Medical Device Quality Supervision and Inspection (2003) Center GB/T 16886.5 Biological evaluation of medical devices—Part 5: Tests for cytotoxicity: In-vitro methods, Beijing

  28. Kumar A, Malviya R, Sharma PK (2011) Recent trends in ocular drug delivery: a short review. Eur J Appl Sci 3:86–92

    CAS  Google Scholar 

  29. Pasut G, Veronese FM (2012) State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 161:461–472

    Article  CAS  PubMed  Google Scholar 

  30. Choi KY, Min KH, Yoon HY et al (2011) PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials 32:1880–1889. doi:10.1016/j.biomaterials.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  31. Raviña M, Cubillo E, Olmeda D et al (2010) Hyaluronic acid/Chitosan-g-poly(ethylene glycol) nanoparticles for gene therapy: an application for pDNA and siRNA delivery. Pharm Res 27:2544–2555. doi:10.1007/s11095-010-0263-y

    Article  PubMed  Google Scholar 

  32. la Fuente DM, Raviña M, Paolicelli P et al (2010) Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 62:100–117

    Article  PubMed  Google Scholar 

  33. Moore AR, Willoughby DA (1995) Hyaluronan as a drug delivery system for diclofenac: a hypothesis for mode of action. Int J Tissue React 17:153–156

    CAS  PubMed  Google Scholar 

  34. Morimoto K, Yamaguchi H, Iwakura Y et al (1991) Effects of viscous hyaluronate–sodium solutions on the nasal absorption of vasopressin and an analogue. Pharm Res 8:471–474. doi:10.1023/A:1015894910416

    Article  CAS  PubMed  Google Scholar 

  35. Ye J, Zhang H, Wu H et al (2012) Cytoprotective effect of hyaluronic acid and hydroxypropyl methylcellulose against DNA damage induced by thimerosal in Chang conjunctival cells. Graefes Arch Clin Exp Ophthalmol 250:1459–1466. doi:10.1007/s00417-012-2087-4

    Article  CAS  PubMed  Google Scholar 

  36. Thierry B, Kujawa P, Tkaczyk C et al (2005) Delivery platform for hydrophobic drugs: prodrug approach combined with self-assembled multilayers. J Am Chem Soc 127:1626–1627. doi:10.1021/ja045077s

    Article  CAS  PubMed  Google Scholar 

  37. Bock N, Dargaville TR, Woodruff MA (2012) Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci 37:1510–1551. doi:10.1016/j.progpolymsci.2012.03.002

    Article  CAS  Google Scholar 

  38. Morota K, Matsumoto H, Mizukoshi T et al (2004) Poly(ethylene oxide) thin films produced by electrospray deposition: morphology control and additive effects of alcohols on nanostructure. J Colloid Interface Sci 279:484–492. doi:10.1016/j.jcis.2004.06.075

    Article  CAS  PubMed  Google Scholar 

  39. Kuo JW, Swann DA, Prestwich GD (1991) Chemical modification of hyaluronic acid by carbodiimides. Bioconjug Chem 2:232–241. doi:10.1021/bc00010a007

    Article  CAS  PubMed  Google Scholar 

  40. Prestwich GD, Marecak DM, Marecek JF et al (1998) Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release 53:93–103. doi:10.1016/S0168-3659(97)00242-3

    Article  CAS  PubMed  Google Scholar 

  41. Pouyani T, Harbison GS, Prestwich GD (1994) Novel hydrogels of hyaluronic acid: synthesis, surface morphology, and solid-state NMR. J Am Chem Soc 116:7515–7522. doi:10.1021/ja00096a007

    Article  CAS  Google Scholar 

  42. Vercruysse KP, Marecak DM, Marecek JF, Prestwich GD (1997) Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjug Chem 8:686–694. doi:10.1021/bc9701095

    Article  CAS  PubMed  Google Scholar 

  43. Schramm C, Spitzer MS, Henke-Fahle S et al (2012) The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute. Invest Ophthalmol Vis Sci 53:613–621. doi:10.1167/iovs.11-7322

    Article  CAS  PubMed  Google Scholar 

  44. Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69:169–184. doi:10.1016/S0168-3659(00)00300-X

    Article  CAS  PubMed  Google Scholar 

  45. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  46. Zhu H, Chauhan A (2009) A mathematical model for tear drainage through the Canaliculi. Curr Eye Res 30:621–630. doi:10.1080/02713680590968628

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ye.

Ethics declarations

Funding

Zhejiang Provincial Science & Technology Department provided financial support in the form of the Specialized Key Science and Technology Foundation (2012C13023–2), and Zhejiang Provincial Program provided financial support in the form of Cultivation of High-Level Innovation Health Talents. The sponsor had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Wang, C., Ning, Q. et al. A new strategy to sustained release of ocular drugs by one-step drug-loaded microcapsule manufacturing in hydrogel punctal plugs. Graefes Arch Clin Exp Ophthalmol 255, 2173–2184 (2017). https://doi.org/10.1007/s00417-017-3755-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3755-1

Keywords