Abstract
Purpose
To design an injectable hyaluronate (HA)-based hydrogel system that contains drug-loaded microcapsules as resorbable plugs to deliver ocular drugs.
Methods
In-situ drug-loaded, core-shell-structured chitosan (CS)@HA microcapsules were fabricated via HA hydrosol collecting in electrospun bead-rich CS fibers under continuous stirring. An injectable and cytocompatible hydrogel system with different degrees of chemical crosslinking maintained viscoelastic and sustained drug release for a long-term period of time at body temperature in vitro.
Results
With the addition of adipic dihydrazide (ADH) or 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride (EDCI), HA hydrosols transited from liquid to solid state at the gel point, with the G′/G″ ratio varying between 1.43 and 5.32 as a function of crosslinker concentration in the hydrogel phase. Ofloxacin (OFL) release from the mechanically mixed hydrosol system (CS-HA-A0-E0) and the micro-encapsulated hydrosol formulation (CS@HA-A0-E0) were respectively over 80% and 51% of the total drug load leaching out within 24 h. As for the drug-mixed hydrogel systems with low (CS-HA-A0.06-E0.15) and high (CS-HA-A0.06-E0.30) crosslinking density, the OFL release rate reached 38.5 and 46.6% respectively, while the micro-encapsulated hydrogel systems with low (CS@HA-A0.06-E0.15) and high (CS@HA-A0.6-E0.30) showed only (11.9 ± 2.7)% and (17.4 ± 3.5)% drug release respectively.
Conclusions
A one-step in-situ drug-capsulizing method is developed to fabricate a resorbable hydrogel punctal plug with extended drug release. The chemistry of the crosslinking reaction involves the formation of highly biocompatible HA derivatives. Thus, the hydrogel can be used directly in the tear drainage canalicular system.
Similar content being viewed by others
References
Patel HA, Patel JK, Patel KN, Patel RR (2010) Ophthalmic drug delivery system—a review. Der Pharmacia Lettre 2:100–115
Ahmed I (2003) The noncorneal route in ocular drug delivery. In: Ak M (ed) Drugs and the pharmaceutical sciences. Marcel Dekker, New York, pp 335–363
Kass MA, Hodapp E, Gordon M et al (1982) Part I. Patient administration of eyedrops: interview. Ann Ophthalmol 14:775–779
Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12:348–360. doi:10.1208/s12248-010-9183-3
Kompella UB, Kadam RS, Lee VH (2010) Recent advances in ophthalmic drug delivery. Ther Deliv 1:435–456. doi:10.4155/tde.10.40
Wei CP, Anderson JA, Leopold I (1978) Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephrine. Invest Ophthalmol Vis Sci 17:315–321
Rautio J, Kumpulainen H, Heimbach T et al (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270. doi:10.1038/nrd2468
Hellberg MR, Ke T-L, Haggard K et al (2004) The hydrolysis of the prostaglandin analog prodrug bimatoprost to 17-phenyl-trinor PGF2α by human and rabbit ocular tissue. J Ocul Pharmacol Ther 19:97–103. doi:10.1089/108076803321637627
Aikawa T, Ito S, Shinohara M et al (2015) A drug formulation using an alginate hydrogel matrix for efficient oral delivery of the manganese porphyrin-based superoxide dismutase mimic. Biomater Sci 3:861–869. doi:10.1039/C5BM00056D
Xi L, Wang T, Zhao F et al (2014) Evaluation of an injectable thermosensitive hydrogel as drug delivery implant for ocular glaucoma surgery. PLoS One 9:e100632. doi:10.1371/journal.pone.0100632
El-Kamel AH (2002) In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm 241:47–55. doi:10.1016/S0378-5173(02)00234-X
Tang J, Li L, Howard CB et al (2015) Preparation of optimized lipid-coated calcium phosphate nanoparticles for enhanced in vitro gene delivery to breast cancer cells. J Mater Chem B 3:6805–6812. doi:10.1039/C5TB00912J
Liu F, He X, Zhang J et al (2015) Controllable synthesis of polydopamine nanoparticles in microemulsions with pH-activatable properties for cancer detection and treatment. J Mater Chem B 3:6731–6739
Das S, Suresh PK (2011) Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomedicine 7:242–247. doi:10.1016/j.nano.2010.07.003
Quinteros D, Vicario-de-la-Torre M, Andrés-Guerrero V et al (2014) Hybrid formulations of liposomes and bioadhesive polymers improve the hypotensive effect of the melatonin analogue 5-MCA-NAT in rabbit eyes. PLoS One 9:e110344. doi:10.1371/journal.pone.0110344
Kambhampati SP, Kannan RM (2013) Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther 29:151–165. doi:10.1089/jop.2012.0232
Glisoni RJ, García-Fernández MJ, Pino M et al (2013) β-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr Polym 93:449–457. doi:10.1016/j.carbpol.2012.12.033
Gaudana R, Jwala J, Boddu SHS, Mitra AK (2009) Recent perspectives in ocular drug delivery. Pharm Res 26:1197–1216. doi:10.1007/s11095-008-9694-0
Knight OJ, Lawrence SD (2014) Sustained drug delivery in glaucoma. Curr Opin Ophthalmol 25:112–117. doi:10.1097/ICU.0000000000000031
Franca JR, Foureaux G, Fuscaldi LL et al (2014) Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLoS One 9:e95461. doi:10.1371/journal.pone.0095461
Yang H-Y, FUJISHIMA H, Toda I et al (1997) Lacrimal punctal occlusion for the treatment of superior limbic keratoconjunctivitis. Am J Ophthalmol 124:80–87
Gupta C, Chauhan A (2011) Ophthalmic delivery of cyclosporine a by punctal plugs. J Control Release 150:70–76. doi:10.1016/j.jconrel.2010.11.009
Rumelt S, Remulla H, Rubin PAD (1997) Silicone punctal plug migration resulting in dacryocystitis and canaliculitis. Cornea 16:377
Han JH, Park JW, Kim SC (2012) Reactive lymphoid hyperplasia of lacrimal canaliculus caused by a silicone plug. Ophthalmic Plast Reconstr Surg 28:e138–e140. doi:10.1097/IOP.0b013e318249d406
Taban M, Chen B, Perry JD (2006) Update on punctal plugs. Compr Ophthalmol Updat 7:205–212
Ye J, Wang C, Su P et al (2010) Biochemically active hydrosol as a means of collecting electrospun microcapsules for drug delivery. J Mater Chem 20:9025–9028. doi:10.1039/C0JM02581J
State Drug Administration Jinan Medical Device Quality Supervision and Inspection (2003) Center GB/T 16886.5 Biological evaluation of medical devices—Part 5: Tests for cytotoxicity: In-vitro methods, Beijing
Kumar A, Malviya R, Sharma PK (2011) Recent trends in ocular drug delivery: a short review. Eur J Appl Sci 3:86–92
Pasut G, Veronese FM (2012) State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 161:461–472
Choi KY, Min KH, Yoon HY et al (2011) PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials 32:1880–1889. doi:10.1016/j.biomaterials.2010.11.010
Raviña M, Cubillo E, Olmeda D et al (2010) Hyaluronic acid/Chitosan-g-poly(ethylene glycol) nanoparticles for gene therapy: an application for pDNA and siRNA delivery. Pharm Res 27:2544–2555. doi:10.1007/s11095-010-0263-y
la Fuente DM, Raviña M, Paolicelli P et al (2010) Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 62:100–117
Moore AR, Willoughby DA (1995) Hyaluronan as a drug delivery system for diclofenac: a hypothesis for mode of action. Int J Tissue React 17:153–156
Morimoto K, Yamaguchi H, Iwakura Y et al (1991) Effects of viscous hyaluronate–sodium solutions on the nasal absorption of vasopressin and an analogue. Pharm Res 8:471–474. doi:10.1023/A:1015894910416
Ye J, Zhang H, Wu H et al (2012) Cytoprotective effect of hyaluronic acid and hydroxypropyl methylcellulose against DNA damage induced by thimerosal in Chang conjunctival cells. Graefes Arch Clin Exp Ophthalmol 250:1459–1466. doi:10.1007/s00417-012-2087-4
Thierry B, Kujawa P, Tkaczyk C et al (2005) Delivery platform for hydrophobic drugs: prodrug approach combined with self-assembled multilayers. J Am Chem Soc 127:1626–1627. doi:10.1021/ja045077s
Bock N, Dargaville TR, Woodruff MA (2012) Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci 37:1510–1551. doi:10.1016/j.progpolymsci.2012.03.002
Morota K, Matsumoto H, Mizukoshi T et al (2004) Poly(ethylene oxide) thin films produced by electrospray deposition: morphology control and additive effects of alcohols on nanostructure. J Colloid Interface Sci 279:484–492. doi:10.1016/j.jcis.2004.06.075
Kuo JW, Swann DA, Prestwich GD (1991) Chemical modification of hyaluronic acid by carbodiimides. Bioconjug Chem 2:232–241. doi:10.1021/bc00010a007
Prestwich GD, Marecak DM, Marecek JF et al (1998) Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release 53:93–103. doi:10.1016/S0168-3659(97)00242-3
Pouyani T, Harbison GS, Prestwich GD (1994) Novel hydrogels of hyaluronic acid: synthesis, surface morphology, and solid-state NMR. J Am Chem Soc 116:7515–7522. doi:10.1021/ja00096a007
Vercruysse KP, Marecak DM, Marecek JF, Prestwich GD (1997) Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjug Chem 8:686–694. doi:10.1021/bc9701095
Schramm C, Spitzer MS, Henke-Fahle S et al (2012) The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute. Invest Ophthalmol Vis Sci 53:613–621. doi:10.1167/iovs.11-7322
Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69:169–184. doi:10.1016/S0168-3659(00)00300-X
Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007
Zhu H, Chauhan A (2009) A mathematical model for tear drainage through the Canaliculi. Curr Eye Res 30:621–630. doi:10.1080/02713680590968628
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
Zhejiang Provincial Science & Technology Department provided financial support in the form of the Specialized Key Science and Technology Foundation (2012C13023–2), and Zhejiang Provincial Program provided financial support in the form of Cultivation of High-Level Innovation Health Talents. The sponsor had no role in the design or conduct of this research.
Conflict of interest
All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Xie, J., Wang, C., Ning, Q. et al. A new strategy to sustained release of ocular drugs by one-step drug-loaded microcapsule manufacturing in hydrogel punctal plugs. Graefes Arch Clin Exp Ophthalmol 255, 2173–2184 (2017). https://doi.org/10.1007/s00417-017-3755-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00417-017-3755-1