[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Geometry and analysis in Euler’s integral calculus

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

Euler developed a program which aimed to transform analysis into an autonomous discipline and reorganize the whole of mathematics around it. The implementation of this program presented many difficulties, and the result was not entirely satisfactory. Many of these difficulties concerned the integral calculus. In this paper, we deal with some topics relevant to understand Euler’s conception of analysis and how he developed and implemented his program. In particular, we examine Euler’s contribution to the construction of differential equations and his notion of indefinite integrals and general integrals. We also deal with two remarkable difficulties of Euler’s program. The first concerns singular integrals, which were considered as paradoxical by Euler since they seemed to violate the generality of certain results. The second regards the explicitly use of the geometric representation and meaning of definite integrals, which was gone against his program. We clarify the nature of these difficulties and show that Euler never thought that they undermined his conception of mathematics and that a different foundation was necessary for analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. By this term, we refer to both the theory of integration of functions and that of the integration of differential equations.

  2. On Euler’s analytical program, see Ferraro (2010).

  3. In his (1727b, 408) Euler stated that Johan Bernoulli was “the most renowned of masters ... who not only was my teacher, greatly fostering my inquiries into such matters, but also looked after me as a patron.”

  4. On the role of the construction of equations in the seventeenth-century mathematics, see Bos (1984, 1993b).

  5. See Bos (1993a, 35).

  6. See, for example, Bernoulli (1964c).

  7. An example is the construction of the elastica with equation \(\mathrm{d}y=\frac{x^{2}\hbox {d}x}{\sqrt{a^{4}-x^{4}}}\) in Bernoulli (1694a). In this paper, after having constructed the algebraic curve \(\frac{x^{2}\hbox {d}x}{\sqrt{a^{4}-x^{4}}}\), Bernoulli assumed that one could determine a rectangle ay equal to \(\int _{0}^{x}\frac{ax^{2}}{\sqrt{a^{4}-x^{4}}}\hbox {d}x\). In this way, given the value of the abscissa x, one could find the point (xy) on the elastica (Bos 1993b, 31–32).

  8. An example is the construction of the paracentricisochrone of equation \(\frac{d(ay)}{2\sqrt{ay}}=\frac{a^{2}\hbox {d}x}{\sqrt{a^{4}-x^{4}}}\) in Bernoulli (1694b). In that case, Bernoulli found \(\sqrt{ay}=\int _{0}^{x}\frac{a^{2}\hbox {d}x}{\sqrt{a^{4}-x^{4}}}\) and interpreted the integral \(\int _{0}^{x}\frac{a^{2}\hbox {d}x}{\sqrt{a^{4}-x^{4}}}\) as the arc length of the elastica. By assuming the rectification of elastica as known, one could determine the paracentric isochrones point by point (Bos 1993b, 32–33).

  9. We note that, given the meaning of this term in Euler [see below and Ferraro (2000)], the function Z could always be constructed by quadrature, rectification, and ruler and compass.

  10. A tractrix is a curve such that the tangent segments between the curve and the axis have constant length.

  11. On the use of tractorial motion in the constructions, see Bos (1988), Tournès (2003).

  12. For a discussion of this construction, see Tournès (2009, 97–108).

  13. In Cartesian coordinates, the equation of the curve is \(u=\frac{nb}{n+1}\hbox {log}t\) and \(t\hbox {d}u=\frac{nb\mathrm{d}t}{n+1}\), namely BN is a logarithmic curve and its constant subtangent is \(\frac{nb}{n+1}\).

  14. On Riccati’s book, see Tournès (2009).

  15. Dieser Grundtheil der Mathematic wird die Analytic oder Algebra genennet.

    6. In der Analytic werden also blos allein Zahlen betrachtet, wodurch die Größen angezeiget werden, ohne sich um die besondere Art der Größen zu bekümmern, als welches in den übrigen Theilen der Mathematic geschiehet (Euler 1770, \(\S \S \)5–6).

  16. See Tournès (2009).

  17. “Of course, if we take x as the abscissa and denote the corresponding orthogonal ordinate by P, the formula \(\int P\hbox {d}x\) expresses the area of the curve above the abscissa x, and, on putting \(x=a\), the area is considered to be equal to the value \(y=\int P\hbox {d}x\)—just as we defined it [namely an integral of the type \(\int _{a}^{b} P(x,u)\hbox {d}x\), where u is regarded as a constant]. Therefore, this integral can—as usually said—be assigned by the quadratures of curves, by which this way of integrating is conveniently called construction by quadratures” (Scilicet dum sumta x pro abscissa, si P denotet applicatam orthogonalem ei convenientem, formula \(\int P\hbox {d}x\) exprimet aream eiusdem curvae abscissae x insistentem, ac posito \(x =a\), area habetur determinata valori \(y=\int P\hbox {d}x\) , prouti eum modo definivimus, aequalis, quae ergo, uti loqui solent, per quadraturas curvarum assignari potest, ex quo haec integrandi ratio commode appellatur constructio per quadraturas) (1768–1770, 2: \(\S \)1016).

  18. Quanquam autem formula \(\int P\hbox {d}x\) spectata quantitate u ut constante actu integrari nequit, tamen eius integrale in hoc negotio pro cognito accipi potest, quia eius valor saltem per approximationes assignari potest (Euler 1768–1770, 2: \(\S \) 1016).

  19. On this question, see also Fraser (1989), Panza (1996).

  20. As seen in Ferraro (2000, 117–188), in the strict sense of the term, a function was precisely what one could to exhibited as a solution to a problem and, therefore, a known object.

  21. See Ferraro (1998, 2000, 2001).

  22. These new instruments were later named special functions; Euler sometimes named them as functions, more often, he merely termed them as quantities.

  23. Euler spoke of a special calculus (peculiaris calculus) concerning them.

  24. For instance, by mean of a table of values.

  25. Euler wrote \(y=\int e^{KQ} P\hbox {d}x\) and specified that the integral vanishes for \(x=b\) and gives the value of y for \(x=a\).

  26. Other instances are in Euler (1768–1770, 2: \({\S }\)1026, \({\S }\)1027, and \({\S }\)1033), where Euler used the transformations \(y=\int \limits _{0}^c {e^{ux}x^{n}(c-x)^{\nu } \hbox {d}x}\), \(y=\int \limits _{0}^c {x^{n}\sqrt{\frac{u^{2}+x^{2}}{c^{2}-x^{2}}}\hbox {d}x}\) and \(y=\int \limits _{0}^c {x^{n-1}(u^{2}+x^{2})^{\mu } (c^{2}-x^{2})^{\nu } \hbox {d}x}\), and showed that they solved the equations \(\frac{u\mathrm{d}^{2}y}{\mathrm{d}x^{2}}+(n+\nu +2-au)\frac{\mathrm{d}y}{\mathrm{d}u}-(n+1)ay=0\), \(u(c^{2}+u^{2})d^{2}y-(n+1)(c^{2}+u^{2})\mathrm{d}u\mathrm{d}y+(n+1)uy\mathrm{d}u^{2}=0\), and \(u(c^{2}+u^{2})d^{2}y-(n+2\mu -1)(c^{2}+u^{2})\mathrm{d}u\mathrm{d}y-2(\mu +\nu )u^{2}\mathrm{d}u\mathrm{d}y +2\mu (n+2\mu +2\nu )uy\mathrm{d}u^{2}=0\).

  27. In Institutionum calculi integralis, Euler made some reference to the relation between a definite integral and the area under the curve, but in those cases he assumes that this was a fact known (see, for instance, quotation in footnote n. 17).

  28. Euler had intended this work, which was published posthumously in 1862 with the title Institutionum calculi differentialis sectio III, to form the third part of his treatise on differential calculus. It is probable that this third part should have played a role similar to the second part of the Introductio in analysis infinitorum, where Euler applied the analytical notions investigated in the first part to geometry.

  29. “quantitas, cujus differentiale = ydx exhibebit aream inter lineam curvam et coordinatas x et y contentam” (Euler 1862, \({\S }\)13).

  30. “Integral calculus is the method for finding, from a given relation of differentials, the relation of the quantities themselves; The operation, which is employed to this end, is usually called integration (...) Therefore, since differential calculus teaches how to investigate the relation of differentials from the given relation of variable quantities, integral calculus is the inverse method (...) Let X be any function of x, the function, the differential of which is equal Xdx, is called its integral” (Calculus integralis est methodus ex data differentialium relatione inveniendi relationem ipsarum quantitatum, et operatio, qua hoc praestatur, integration vocari solet... Cum igitur calculus differentialis ex data relatione quantitatum variabilium relationem differentialium investigare doceat, calculus integralis methodum inversam suppeditat ...X sit functio quaecunque ipsius x, illa functio, cuius differentiale est = Xdx , huius vocatur integrale) (Euler 1768–1770, 1: \({\S }{\S }\)1, 2, and 7). The term ‘anti-differential’ is not found in Euler’s papers, we use it for brevity.

  31. Quemadmodum in calculo differentiali cuiusvis quantitatis differentiale investigatur, ita vicissim calculi species constituitur quoque in inventione eius quantitatis, cuius differentiale proponitur, qui calculus integralis vocatur. Si enim propositum fuerit differentiale quodcunque, eius respectu ea quantitas, cuius est differentiale, vocari solet integrale (Euler 1755, \({\S }\)139).

  32. In this paper, for short, we will use the modern expressions “definite integral” and “indefinite integral,” which are not found in Euler. We also observe that initially Euler expressed the definite integral by means of circumlocutions: “if, after integration, a determinate value is given to a variable quantity” [see, for instance, Euler (1743, 1766)] or “integration extended from the value \(x=a\) to the value \(x=b\)” [see, e.g., Euler (1771)]. Only later, he introduced the symbol \(\int f(x)\hbox {d}x\left[ {{\begin{array}{l} \hbox {ab}\quad x=a \\ \hbox {ad}\quad x=b \\ \end{array}}} \right] \) similar to the modern notation \(\int \limits _{a}^{b} {f(x)\hbox {d}x}\) [see, e.g., Euler (1777, 1785, 1789)]. We will employ the modern symbol.

  33. Omnes functiones per calculum integralem inventae sunt indeterminatae ac requirunt determinationem ex natura quaestionis, cuius solutionem suppeditant (Euler 1768–1770, 1: \({\S }\)31).

  34. Integrale completum exhiberi dicitur, quando functio quaesita omni extensione cum constante arbitraria repraesentatur. Quando autem ista constans iam certo modo est determinata, integrale vocari solet particulare (Euler 1768–1770, 1: \({\S }\)36). In his (1768–1770, 1: \({\S }\)540) Euler gave the name particular integral to a relation between the variables that it satisfied the given equation and that did not contain any new constant quantity.

  35. Si functiones, quae in calculo integrali ex relatione differentialium quaeruntur, algebraice exhiberi nequeant, tum eae vocantur transcendentes, quandoquidem earum ratio vires Analyseos communis transcendit.... Ita si formula differentialis Xdx integrationem non admittit, eius integrale, quod ita indicari solet \(\int X \hbox {d}x\), est functio transcendens ipsius x (Euler 1768–1770, 1: \({\S }{\S }\)24–25).

  36. Cum calculus integralis ex inversione calculi differentialis oriatur, perinde ac reliquae methodi inversae ad notitiam novi generis quantitatum nos perducit. Ita si a tirone primorum elementorum nihil praeter notitiam numerorum integrorum positivorum postulemus, apprehensa additione, statim atque ad operationem inversam, subtractionem scilicet, ducitur, notionem numerorum negativorum assequetur. Deinde multiplicatione tradita, cum ad divisionem progreditur, ibi notionem fractionum accipiet. Porro postquam evectionem ad potestates didicerit, si per operationem inversam extractionem radicum suscipiat, quoties negotium non succedit, ideam numerorum irrationalium adipiscetur haecque cognitio per totam Analysin communem sufficiens censetur. Simili ergo modo calculus integralis, quatenus integratio non succcedit, novum nobis genus quantitatum transeendentium aperit. Non enim, uti omnium differentialia exhiberi possunt, ita vicissim omnium differentialium integralia exhibere licet (Euler 1768–1770, 1: \({\S }\)29).

  37. See Ferraro (2000).

  38. In Sect. 5, we will see that sometimes Euler explicitly used geometric principles.

  39. (1) Neque vero, statim ac primi conatus in integratione expedienda fuerint initi, functiones quaesitae pro transcendentibus sunt habendae; fieri enim saepe solet, ut integrale etiam algebraicum nonnisi per operationes artificiosas obtineri queat. (2) Deinde quando functio quaesita fuerit transcendens, sollicite videndum est, num forte ad species illas simplicissimas logarithmorum vel angulorum revocari possit, quo casu solutio algebraicae esset aequiparanda. (3) Quod si minus successerit, formam tamen simplicissimam functionum transcendentium, ad quam quaesitam reducere liceat, indagari conveniet. (4) Ad usum autem longe commodissimum est, ut valores functionum transcendentium vero proxime exhibeantur, quem in finem insignis pars calculi integralis in investigationem serierum infinitarum impenditur, quae valores earum functionum contineant (Euler 1768–1770, 1: \({\S }\)30).

  40. Point (4) suggests the use of series for calculating the approximate values of the integral.

  41. Euler did not ask for a proof that a certain integral could not be expressed in elementary form or in terms of some other transcendental. It is difficult to state whether he did not think of this impossibility proof as something one ought to find or he just did not know how to do it.

  42. In Euler (1768–1770, 1: \({\S }\)213), integrating by parts Euler obtained:

    $$\begin{aligned} \int \frac{x^{m-1}}{\mathrm{log}^{n}x}\hbox {d}x= & {} -\frac{x^{m}}{(n-1)\mathrm{log}^{n-1}x} -\frac{mx^{m}}{(n-1)(n-2)\mathrm{log}^{n-2}x}-\frac{m^{2}x^{m}}{(n-1)(n-2)(n-3)\mathrm{log}^{n-3}x}\\&-\cdots -\frac{m^{n-2}}{(n-1)(n-2)\ldots 1}\frac{x^{m}}{\mathrm{log}\,x} +\frac{m^{n-1}}{(n-1)(n-2)\ldots 1}\int \frac{x^{m-1}}{\mathrm{log}\,x}\hbox {d}x. \end{aligned}$$
  43. Hae ergo integrationes pendent a formula \(\int \frac{x^{m-1}}{lx}\hbox {d}x\), quae posito \(x^{m}=z\ldots \) reducitur ad hanc simplicissimam formam \(\int \frac{\mathrm{d}z}{lz}\); cuius integrale si assignari posset, amplissimum usum in Analysi esset allaturum, verum nullis adhuc artificiis neque per logarithmos neque angulos exhiberi potuit; quomodo autem per seriem exprimi possit, infra ostendemus (\({\S }\)228). Videtur ergo haec formula \(\int \frac{\mathrm{d}z}{lz}\) singularem speciem functionum transcendentium suppeditare, quae utique accuratiorem evolutionem meretur. Eadem autem quantitas transcendens in integrationibus formularum exponentialium frequenter occurrit, quas in hoc capite tractare instituimus, propterea quod cum logarithmicis tam arcte cohaerent, ut alterum genus facile in alterum converti possit: veluti ipsa formula modo considerata \(\frac{\mathrm{d}z}{lz}\) posito \(lz=x\), ut sit \(z=e^{x}\) et \(\mathrm{d}z=e^{x}\mathrm{d}x\), transformatur in hanc exponentialem \(e^{x}\frac{\mathrm{d}x}{x}\), cuius ergo integratio aeque est abscondita (Euler 1768–1770, 1: \({\S }\)219).

  44. This has been Leibniz’s definition of the integral (summatrix). Starting from this definition, he had deduced the relationship between integration and differentiation. As early as the 1690s, Johann Bernoulli [see Engelsman (1984, 46)] had preferred to define integration as anti-differentiation and, during the eighteenth century, this definition was the prevailing one [see, for instance, Hermann (1726), d’Alembert (1765), Lagrange (1797)].

  45. Neque etiam calculus differentialis in quantitate differentialum, quae nulla est, indaganda occupatur, sed in eorum ratione mutual definienda, quae ratio utique certam obtinet quantitatem (Euler 1765, \({\S }\)9).

  46. Euler did not distinguish between these notions.

  47. On this question, see Ferraro and Panza (2012).

  48. See Ferraro (2004).

  49. This notion of continuous quantity was substantially a primitive notion in Euler’s calculus.

  50. The expression “singular integrals” is not found in Euler’s writings.

  51. Problème II. Sur l’axe AB trouver la courbe AMB telle, qu’ayant de son point quelconque M la tangente TMV, elle coupe en sorte les deux droites AE et BF, tirées perpendiculairement sur l’axe AB, en deux points donnés A et B, que le rectangle formé par les lignes AT et BV soit partout de la même grandeur (Euler 1756, \({\S }\)18).

  52. Pour l’exemple que je viens d’alléguer ici, comme il est formé à fantaisie, on pourroit aussi douter, si ce cas se rencontre jamais dans la solution d’un probleme réel (Euler 1756, \({\S }\)37).

  53. on pourroit croire que c’est quelque bizarrerie dans les problemes mecaniques, qui n’auroit plus lie sans les problemes de Geometrie; ou que ce ne seroit pas un reproche, qu’on pourroit faire directement à l’Analyses même (Euler 1756, \({\S }\)36).

  54. Already in the 1730s, in his first studies on gamma function, Euler had used the beta integral and had showed that the calculation of \(\int \limits _{0}^{1}{(-\log x)^{n}\hbox {d}x}\) could be reduced to the calculation of the beta integral, namely \(\int \limits _{0}^{1}{(-\log x)^{n}\hbox {d}x} =\frac{(f+g)(f+2g)\ldots (f+(n+1)g)}{g^{\mathrm{n+1}}}\int \limits _{0}^{1} {x^{\frac{f}{g}}} (1-x)^{n}\hbox {d}x\) (in a more modern notation \(\Gamma (n+1)=B\left( {\frac{f}{g}+1,n+1} \right) \frac{(f+g)(f+2g)...(f+(n+1)g)}{g^{\mathrm{n+1}}}\), where \(\Gamma (x)\) and B(xy) are the gamma and beta functions) (Euler 1730–1731, 13–14). Among other articles on the beta integral, see, e.g., Euler (1739a, b).

  55. See above Sect. 3.

  56. Euler applied the formula for the change of the order of integration that is found in his (1775b).

  57. Euler used the symbol \(\int P\hbox {d}x\left[ {{\begin{array}{l} \hbox {ab}\quad x=a \\ \hbox {ad}\quad x=b\\ \end{array}}}\right] \). In Euler (1785\({\S }\)1), he explained that \(\int P\hbox {d}x\left[ {{\begin{array}{l} \hbox {ab}\quad x=a \\ \hbox {ad}\quad x=b\\ \end{array}}}\right] \)denoted the integral \(\int P\hbox {d}x\) so that it vanished posing \(x=a\) and one stated \(x=b\) (Hac signandi ratione \(\int P\hbox {d}x \left[ {{\begin{array}{l} \hbox {ab} \quad x=a\\ \hbox {ad}\quad x=b\\ \end{array}}}\right] \) declaratur, integrale \(\int P\hbox {d}x\) ita esse affirmatum, ut evanescat posito \(x=a\), tum vero statui \(x=b\)).

  58. In Euler’s original words: Lemma 1. \(\int P\hbox {d}x\left[ {{\begin{array}{l} {\hbox {ab}\quad x=a} \\ {\hbox {ad}\quad x=b} \\ \end{array}}}\right] =-\int P\hbox {d}x\left[ {{\begin{array}{l} {\hbox {ab}\quad x=b} \\ {\hbox {ad}\quad x=a} \\ \end{array}} } \right] \)

    Quoniam enim, sit b ut maius spectetur quam a, formula posterior \(\int P\hbox {d}x\left[ {{\begin{array}{l} {\hbox {ab}\quad x=b} \\ {\hbox {ad}\quad x=a} \\ \end{array}}}\right] \) eandem aream AaBb refert quam prior, sed ordine retrogrado, ista expressio pro negativa erit habenda, sicque erit quoque

    $$\begin{aligned} \int P\hbox {d}x\left[ {{\begin{array}{l} {\hbox {ab}\quad x=a} \\ {\hbox {ad}\quad x=b} \\ \end{array}}}\right] +\int P\hbox {d}x\left[ {{\begin{array}{l} {\hbox {ab}\quad x=b} \\ {\hbox {ad}\quad x=a} \\ \end{array}}}\right] =0. \end{aligned}$$
  59. On Euler’s treatment of discontinuous functions, see Ferraro (2000). A different approach to the question can be found in Spalt (2011).

  60. In opposition functions composed by one only analytical formula were termed continuous functions.

  61. ... calculus integralis ad functiones duarum variabilium accommodatus plurimum differt a calculo integrali communi, ubi non nisi functiones unius varibilis occurunt, et praecepta omnino singularia postulat, praeterquam quod in eo omnia quoque artificia prioris partis sint in usum vocanda. Verum haud diu est, ex quo haec pars Analyseos coli est coepta, ita ut vix adhunc prima eius elementa satis sint evoluta (Euler 1765, \({\S }\)17).

  62. Quis autem in curva quacunque libero manus ductu descripta applicatas abscissis

    $$\begin{aligned} x+a\sqrt{-1y} \hbox { et } x-a\sqrt{-1y} \end{aligned}$$

    respondentes animo saltem imaginari ac summam earum realem assignare valuerit aut differentiam, quae per \(\sqrt{-1}\) divisa etiam erit realis? Hic ergo haud exiguus defectus calculi cernitur, quem nullo adhuc modo supplere licet (Euler 1768–1770, \({\S }\)301).

  63. Euler referred to functions of one variable that could be expressed by only one analytical formula (in other terms he referred to the theory of elementary functions, which included their development into power series).

  64. See Ferraro (2007).

References

  • Bernoulli, Jakob 1694a. Curvatura lamina elasticae. Acta Eruditorum, 1694. In (OO, pp. 597–600).

  • Bernoulli, Jakob.1694b. Solutio problematis Leibnitiani. Acta Eruditorum, 1694. In (OO, pp. 601–607).

  • Bernoulli, Jakob. 1694c. Constructio curvae accessus et recessus aequabilis ope rectificationis curvae cujusdam algebricae. Acta Eruditorum, 1694. In (OO, pp. 608–612).

  • Bernoulli, Jakob. (OO) 1744. Jacobi Bernoulli Basileensis opera. Genevae: Cramer & Philibert.

  • Bos, H.J.M. 1984. Arguments on motivation in the rise and decline of a mathematical theory; the“Construction of equations”, 1637 - ca. 1750. Archive for History of Exact Sciences 30(2007): 331–380.

    Article  MathSciNet  MATH  Google Scholar 

  • Bos, H.J.M. 1988. Tractional motion and the legitimation of transcendental curves. Centaurus 31(1): 9–62.

    Article  MathSciNet  MATH  Google Scholar 

  • Bos, H.J.M. 1993a. On the interpretation of exactness. In Philosophy of mathematics: Proceedings of the 15th international Wittgenstein_symposium, ed. J. Czermark, 23–44. Vienna: Holder-Pichler-Tempsky.

  • Bos, H.J.M. (ed.). 1993b. The concept of construction and the representation of curves in seventh-century mathematics, In Lectures in the history of mathematics, pp. 23–36. Providence, RI: American Mathematical Society.

  • d’Alembert, J. le Rond. 1765. Integral in Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers, vol. III, 805a–805b. Paris: Durand.

  • Dedekind, R. 1872. Stetigkeit und irrationale Zahlen. Braunschweig: Vieweg.

    MATH  Google Scholar 

  • Engelsman, S.B. 1984. Families of curves and the origins of partial differentiation. Amsterdam: Elsevier.

    Google Scholar 

  • Euler, L. 1726. Constructio linearum isochronarum in medio quocunque resistente. Acta Eruditorum, 1726, pp. 361–363. In (OO, (2), 6, 1–3).

  • Euler, L. 1727a. Dissertatio de novo quodam curvarum tautochronarum genere. Commentarii Academiae Scientiarum Petropolitanae 2:126–138. In (OO, (2), 6, 4–14).

  • Euler, L. 1727b. Methodus inveniendi traiectorias reciprocas algebraicas. Acta Eruditorum 1727:408–412. In (OO (1), 27, 1–5).

  • Euler, L. 1727c. Problematis traiectoriarum reciprocarum solutio. Commentarii Academiae Scientiarum Petropolitanae 2(1729): 90–111.

    Google Scholar 

  • Euler, L. 1728. Nova methodus innumerabiles aequationes differentiales secundi gradus reducendi ad aequationes differentiales primi gradus. Commentarii Academiae Scientiarum Petropolitanae 3:124–137. In (OO, (1), 22, 1–14).

  • Euler, L. 1730–1731. De progressionibus trascendentibus seu quarum termini generales algebraice dari nequeunt. Commentarii Academiae Scientiarum Imperialis Petropolitanae 5: 36–57. In (OO, (1), 14, 1–24).

  • Euler, L. 1732–1733a. Constructio æquationis differentialis \(ax^{n}dx=dy+y^{2}dx\). Commentarii Academiae Scientiarum Petropolitanae 6:124–137. In (OO, (1), 22, 19–35).

  • Euler, L. 1732–1733b, Specimen de constructione æquationum differentialium sine indeterminatarum separatione. Commentarii Academiae Scientiarum Petropolitanae 6:168–174. In (OO, (1), 22, 1–7).

  • Euler, L. 1733. Constructio aequationum quarundam differentialium, quae indeterminatarum separationem non admittunt. Nova Actaeruditorum 369–373. In (OO, (1), 22, 15–18).

  • Euler, L. 1739a. De productis ex infinitis factoribus ortis. Commentarii Academiae Scientiarum Petropolitanae 11:3–31. In (OO, (1), 14, 260–290).

  • Euler, L. 1739b. De fractionibus continuis observationes. Commentarii Academiae Scientiarum Petropolitanae 11:32–81. In (OO, (1), 14, 291–349).

  • Euler, L. 1741. De constructione aequationum ope motus tractorii aliisque ad methodum tangentium inversam pertinentibus. Commentarii Academiae Scientiarum Petropolitanae 8(1736):66–85. In (OO, (1), 22, 83–107).

  • Euler, L. 1743. De inventione integralium, si post integrationem variabili quantitati determinatus valor tribuatur. Miscellanea Berolinensia 7:129–171. In (OO, (1), 17, 35–69).

  • Euler, L. 1748. Introductio in analysin infinitorum, Lausannae: M. M. Bousquet et Soc. In (OO, (1) vols. 8–9).

  • Euler, L. 1754–1755. Subsidium calculi sinuum. Novi Commentarii Academiae Scientiarum Petropolitanae, 5:164–204, Summarium 17–19. In (OO, (1), 14, 542–582).

  • Euler, L. 1755. Institutiones calculidifferentialiscuneiususu in analysin infinitorum ac doctrina serierum, Petropoli: Impensis Academiae Imperialis Scientiarum. In (OO, (1), 10).

  • Euler, L. 1756. Exposition de quelques paradoxes dans le calcul intégral. Mémoires des l’Académie des Sciences de Berlin 12:300–321. In (OO, (1), 22, 214–236).

  • Euler, L. 1765. De usu functionum discontinarum in analysi. Novi Commentarii academiae scientiarum Petropolitanae 11:6–27. In (OO, (1), 23, 74–91).

  • Euler, L. 1766. Observationes circa integralia formularum \(\int x^{p-1} dx(1-x^{n})^{q/n-1}\) posito post integrationem \(x=1\). Melanges de philosophie et de la mathematique de la societe royale de Turin 3:156–177. In (OO, (1), 17, 268–288).

  • Euler, L. 1768–1770. Institutionum calculi integralis. Petropoli: Impensis Academiae Imperialis Scientiarum. In (OO, (1), 11–13).

  • Euler, L. 1769. De formulis integralibus duplicatis. Novi Commentarii Academiae Scientiarum Petropolitanae 14(1749):72–103. In (OO, (1), 17, 289–315).

  • Euler, L. 1770. Vollständige Anleitung zur Algebra St. Petersburg: Kaiserliche Academie der Wissenschaften. In (OO, (1), 1).

  • Euler, L. 1771. Evolutio formulae integralis \(\int x^{f-1} dx(lx)^{m/n}\) integratione a valore \(x=0\) ad \(x=1\) extensa. Novi Commentarii Academiae Scientiarum Petropolitanae 16(1772):91–139. In (OO, (1), 17, 316–357).

  • Euler, L. 1775a. Speculationes analyticae. Novi Commentarii Academiae Scientiarum Petropolitanae 20:59–79. In (OO, (1), 18, 1–22).

  • Euler, L. 1775b. Nova methodus quantitates integrales determinandi. Novi Commentarii Academiae Scientiarum Petropolitanae 19:66–102. In (OO, (1), 17, 421–457).

  • Euler, L. 1777. De integratione formulae \(\int (dxlx)/\surd (1-xx)\) ab \(x=0\) ad \(x=1\) extensa. Acta Academiae Scientiarum Petropolitanae 2:3–28. In (OO, (1), 18, 23–50).

  • Euler, L. 1785. Observationes in aliquot theoremata illustrissimi de la Grange. Opuscula Analytica 2:16–41. In (OO, 1, 18, 156–177).

  • Euler, L. 1789. Comparatio valorum formulae integralis \(\int (x^{p-1}dx)/(^{n}\surd ((1-x^{n})^{n-q}))\) a termino \(x=0\) usque ad \(x\) = 1 extensae. Nova Acta Commentarii Academiae Scientiarum Petropolitanae 5:86–117. In (OO, (1), 18, 392–423).

  • Euler, L. 1862. Institutionum calculi differentialis Sectio III. Opera Postuma 1:342–402. In (OO, (1), 29, 334–391).

  • Euler, L. (OO) 1911-\(\ldots \). Leonhardi Euleri opera omnia. Basel: Birkhäuser.

  • Ferraro, G. 1998. Some aspects of Euler’s theory of series. Inexplicable functions and the Euler–Maclaurin summation formula. Historia Mathematica 25: 290–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraro, G. 2000. Functions, functional relations and the laws of continuity in Euler. Historia Mathematica 27: 107–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraro, G. 2001. Analytical symbols and geometrical figures. Eighteenth century analysis as nonfigural geometry. Studies in History and Philosophy of Science 32: 535–555.

    Article  MathSciNet  Google Scholar 

  • Ferraro, G. 2004. Differentials and differential coefficients in the Eulerian foundations of the calculus. Historia Mathematica 31: 34–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraro, G. 2007. The foundational aspects of Gauss’s work on the hypergeometric, factorial and digamma functions. Archive for History of Exact Sciences 61: 457–518.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraro, G. 2010. Euler’s analytical program. Quaderns d’història de l’enginyeria 11: 175–198.

    Google Scholar 

  • Ferraro, G. 2012. Manuali di aritmetica, algebra, trigonometria e geometria analitica nella Napoli preunitaria. History of Education & Children’s Literature 7: 415–435.

    Google Scholar 

  • Ferraro, G., and M. Panza. 2012. Lagrange’s theory of analytical functions and his ideal of purity of method. Archive for History of Exact Sciences 66: 95–197.

    Article  MathSciNet  MATH  Google Scholar 

  • Fraser, C. 1989. The calculus as algebraic analysis—some observations on mathematical-analysis in the 18th-century. Archive for History of Exact Sciences 39(4): 317–335.

    MathSciNet  MATH  Google Scholar 

  • Grattan-Guinness, I. 1970. The development of the foundations of mathematical analysis from Euler to Riemann. Cambridge, London: M.I.T Press.

    MATH  Google Scholar 

  • Hermann, J. 1726. De calculo integrali. Commentarii Academiae Scientiarum Petropolitanae 1: 149–167.

    Google Scholar 

  • Lagrange, J-L. 1797. Théorie des fonctions analytiques: contenant les principes du calcul différentiel, dégagés de toute considération d’infiniment petits et d’évanouissons de limites ou de fluxions, et réduits à l’analyse algébrique des quantités finies, Paris: Impr. de la République. In Œuvres de Lagrange, ed. by M.J.-A. Serret and G. Darboux, Gauthier-Villars, Paris, 1867–1892, vol. 9.

  • Panza, M. 1996. Concept of function, between quantity and form, in the 18th century. In History of mathematics and educations: Ideas and experiences, ed. H.N. Jahnke, N.Knocheand M. Otte, 241–274. Göttingen: Vandenhoeck & Ruprecht.

  • Riccati, V. 1752. De usu motus tractorii in constructione æquationum differentialium commentarius. Bononiæ: Ex typographia Lælii a Vulpe.

  • Spalt, D.D. 2011. Welche Funktionsbegriffe gab Leonhard Euler? Historia Mathematica 38: 485–505.

    Article  MathSciNet  Google Scholar 

  • Tournès, D. 2003. L’intégration graphique des équations différentielles ordinaires. Historia Mathematica 30: 457–493.

    Article  MathSciNet  MATH  Google Scholar 

  • Tournès, D. 2009. La construction tractionnelle des équations différentielles. Paris: Albert Blanchard.

    Google Scholar 

Download references

Acknowledgments

We thank Jesper Lützen and Jeremy Gray for useful suggestions and improving our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Capobianco.

Additional information

Communicated by Jesper Lützen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capobianco, G., Enea, M.R. & Ferraro, G. Geometry and analysis in Euler’s integral calculus. Arch. Hist. Exact Sci. 71, 1–38 (2017). https://doi.org/10.1007/s00407-016-0179-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-016-0179-y

Keywords