[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An enriched 1D finite element for the buckling analysis of sandwich beam-columns

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Sandwich constructions have been widely used during the last few decades in various practical applications, especially thanks to the attractive compromise between a lightweight and high mechanical properties. Nevertheless, despite the advances achieved to date, buckling still remains a major failure mode for sandwich materials which often fatally leads to collapse. Recently, one of the authors derived closed-form analytical solutions for the buckling analysis of sandwich beam-columns under compression or pure bending. These solutions are based on a specific hybrid formulation where the faces are represented by Euler–Bernoulli beams and the core layer is described as a 2D continuous medium. When considering more complex loadings or non-trivial boundary conditions, closed-form solutions are no more available and one must resort to numerical models. Instead of using a 2D computationally expensive model, the present paper aims at developing an original enriched beam finite element. It is based on the previous analytical formulation, insofar as the skin layers are modeled by Timoshenko beams whereas the displacement fields in the core layer are described by means of hyperbolic functions, in accordance with the modal displacement fields obtained analytically. By using this 1D finite element, linearized buckling analyses are performed for various loading cases, whose results are confronted to either analytical or numerical reference solutions, for validation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond Edinb Dublin Philos Mag J Sci 41:744–746

    Article  Google Scholar 

  2. Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech 12:69–77

    MathSciNet  MATH  Google Scholar 

  3. Dong SB, Alpdogan C, Taciroglu E (2010) Much ado about shear correction factors in Timoshenko beam theory. Int J Solids Struct 47(13):1651–1665

    Article  MATH  Google Scholar 

  4. Ambartsumian SA (1958) On the theory of bending plates. Izv Otd Tech Nauk AN SSSR 5:69–77

    MathSciNet  Google Scholar 

  5. Reddy JN (1984) A refined non-linear theory of plates with transverse shear deformation. Int J Solids Struct 9–10(20):881–896

    Article  MATH  Google Scholar 

  6. Touratier M (1991) An efficient standard plate theory. Int J Eng Sci 29(8):901–916

    Article  MATH  Google Scholar 

  7. Soldatos KP (1992) A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech 94:195–220

    Article  MathSciNet  MATH  Google Scholar 

  8. Sayyad AS (2013) Flexure of thick orthotropic plates by exponential shear deformation theory. Latin Am J Solids Struct 10(3):473–490

    Article  Google Scholar 

  9. Demasi L (2009) \( \infty ^6 \) Mixed plate theories based on the generalized unified formulation. Part II: Layerwise theories, Compos Struct 87(1):12–22

    Google Scholar 

  10. Liu D, Li X (1996) An overall view of laminate theories based on displacement hypothesis. J Compos Mater 30(14):1539–1561

    Article  Google Scholar 

  11. Reddy JN (1993) An evaluation of equivalent-single-layer and layerwise theories of composite laminates. Compos Struct 1–4(25):21–35

    Article  Google Scholar 

  12. Carrera E (2002) Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch Comput Methods Eng 9(2):87–140

    Article  MathSciNet  MATH  Google Scholar 

  13. Reddy JN, Robbins DH (1994) Theories and computational models for composite laminates. Appl Mech Rev 47(6):147–169

  14. Toledano A, Murakami H (1987) A composite plate theory for arbitrary laminate configurations. J Appl Mech 54(1):181–189

    Article  MATH  Google Scholar 

  15. Di Sciuva M (1984) A refined transverse shear deformation theory for multilayered anisotropic plates. Atti Della Accad Delle Sci Di Torino 118:279–295

    MATH  Google Scholar 

  16. Tessler A, Di Sciuva M, Gherlone M (2010) A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics. J Mech Mater Struct 5(2):341–367

    Article  Google Scholar 

  17. Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Methods Eng 10(3):215–296

  18. Ghugal YM, Shimpi RP (2002) A review of refined shear deformation theories of isotropic and anisotropic laminated plates. J Reinf Plastics Compos 21(9):775–813

  19. Zhen W, Wanji C (2008) An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams. Compos Struct 84(4):337–349

    Article  Google Scholar 

  20. Hu H, Belouettar S, Potier-Ferry M, Daya EM (2008) Review and assessment of various theories for modeling sandwich composites. Compos Struct 84(3):282–292

    Article  Google Scholar 

  21. Phan CN, Bailey NW, Kardomateas GA, Battley MA (2012) Wrinkling of sandwich wide panels/beams based on the extended high-order sandwich panel theory: formulation, comparison with elasticity and experiments. Arch Appl Mech 10–11:1585–1599

    Article  MATH  Google Scholar 

  22. Hu H, Belouettar S, Potier-Ferry M, Makradi A (2009) A novel finite element for global and local buckling analysis of sandwich beams. Compos Struct 90(3):270–278

    Article  Google Scholar 

  23. Douville MA, Le Grognec P (2013) Exact analytical solutions for the local and global buckling of sandwich beam-columns under various loadings. Int J Solids Struct 16–17:2597–2609

    Article  Google Scholar 

  24. Sad Saoud K, Le Grognec P (2014) A unified formulation for the biaxial local and global buckling analysis of sandwich panels. Thin-Walled Struct 82:13–23

    Article  Google Scholar 

  25. Smith BT, Boyle JM, Dongarra JJ, Garbow BS, Ikebe Y, Klema VC, Moler CB (1976) Matrix eigensystem routines-EISPACK guide lecture notes in computer science, vol 6. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Nord-Pas-de-Calais Regional Council (France) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Le Grognec.

Appendices

Appendix A. Closed-form expressions for the critical displacements of a sandwich column

The critical displacements are given by the following expressions in the antisymmetric and symmetric cases, respectively:

$$\begin{aligned} \lambda _{cr}^A= & {} \left( 4E_s E_c n\pi L^2 h_s\left[ 4n^2\pi ^2 h_s^2+3L^2\right] \cosh ^2\frac{n\pi h_c}{L}\right. \nonumber \\&+ \left[ 3E_c^2 L^5+12E_s E_c n^2\pi ^2 L^3 h_s^2\left( 1-\nu _c\right) \right. \nonumber \\&\left. +\,4E_s^2 n^4\pi ^4 Lh_s^4\left( 3+2\nu _c-\nu _c^2\right) \right] \nonumber \\&\quad \cosh \frac{n\pi h_c}{L}\sinh \frac{n\pi h_c}{L}\nonumber \\&-\,3E_c n\pi L^4\left[ 4E_s h_s+E_c h_c\right] \nonumber \\&+\,12E_s E_c n^3\pi ^3 L^2 h_s^2 h_c\left[ 1+\nu _c\right] \nonumber \\&\left. +\,4E_s^2 n^5\pi ^5 h_s^4 h_c\left[ 1+\nu _c\right] ^2\right) /\nonumber \\&\quad \left( 12E_s n\pi Lh_s\left[ E_c L^2\cosh ^2\frac{n\pi h_c}{L}\right. \right. \nonumber \\&+\,E_s n\pi h_s L\left( 3+2\nu _c-\nu _c^2\right) \cosh \frac{n\pi h_c}{L}\sinh \frac{n\pi h_c}{L}\nonumber \\&+\left. \left. E_s n^2\pi ^2 h_s h_c\left( 1+\nu _c\right) ^2\right] \right) \end{aligned}$$
(33)
$$\begin{aligned} \lambda _{cr}^S= & {} \left( 4E_s E_c n\pi L^2 h_s\left[ [4n^2\pi ^2 h_s^2+3L^2\right] \cosh ^2\frac{n\pi h_c}{L}\right. \nonumber \\&+ \left[ 3E_c^2 L^5+12E_s E_c n^2\pi ^2 L^3 h_s^2\left( 1-\nu _c\right) \right. \nonumber \\&\left. +\,4E_s^2 n^4\pi ^4 Lh_s^4\left( 3+2\nu _c-\nu _c^2\right) \right] \nonumber \\&\times \cosh \frac{n\pi h_c}{L}\sinh \frac{n\pi h_c}{L}\nonumber \\&\left. +\,3E_c^2 n\pi L^4 h_c\right. \nonumber \\&\left. -\,16E_s E_c n^3\pi ^3 L^2 h_s^3\right. \nonumber \\&\left. -\,12E_s E_c n^3\pi ^3 L^2 h_s^2 h_c\left[ 1+\nu _c\right] \right. \nonumber \\&\left. -\,4E_s^2 n^5\pi ^5 h_s^4 h_c\left[ 1+\nu _c\right] ^2\right) /\nonumber \\&\left( 12E_s n\pi Lh_s\left[ E_c L^2\cosh ^2\frac{n\pi h_c}{L}\right. \right. \nonumber \\&+\,E_s n\pi h_s L\left( 3+2\nu _c-\nu _c^2\right) \cosh \frac{n\pi h_c}{L}\sinh \frac{n\pi h_c}{L}\nonumber \\&\left. \left. -\,E_c L^2-E_s n^2\pi ^2 h_s h_c\left( 1+\nu _c\right) ^2\right] \right) \end{aligned}$$
(34)

Appendix B. Useful expressions in the core layer

The displacement gradient tensor components in the foam core write:

$$\begin{aligned} {\mathcal {H}}_{XX}^c= & {} U^c_{0,_X}+U^c_{1,_X}\sinh \left( \frac{\pi }{L}Y\right) +\phi _{1,_X}\cosh (\alpha Y)\nonumber \\&+\, \phi _{2,_X}\sinh (\alpha Y)\nonumber \\&+\, \phi _{3,_X} Y\cosh (\alpha Y)+\phi _{4,_X} Y\sinh (\alpha Y)\nonumber \\ {\mathcal {H}}_{XY}^c= & {} U^c_1 \frac{\pi }{L}\cosh \left( \frac{\pi }{L}Y\right) +\phi _1 \alpha \sinh (\alpha Y)+\phi _2 \alpha \cosh (\alpha Y)\nonumber \\&+\,\phi _3[\cosh (\alpha Y)+\, Y\alpha \sinh (\alpha Y)]\nonumber \\&+\,\phi _4[\sinh (\alpha Y)+Y\alpha \cosh (\alpha Y)]\nonumber \\ {\mathcal {H}}_{YX}^c= & {} V^c_{0,_X} \cosh \left( \frac{\pi }{L}Y\right) +V^c_{1,_X} Y+\phi _{5,_X} \cosh (\alpha Y)\nonumber \\&+\,\phi _{6,_X} \sinh (\alpha Y)+\phi _{7,_X} Y \cosh (\alpha Y)\nonumber \\&+\,\phi _{8,_X} Y \sinh (\alpha Y)\nonumber \\ {\mathcal {H}}_{YY}^c= & {} V^c_0 \frac{\pi }{L} \sinh \left( \frac{\pi }{L} Y\right) +V^c_1+\phi _5 \alpha \sinh (\alpha Y)\nonumber \\&+\,\phi _6 \alpha \cosh (\alpha Y)+\phi _7[\cosh (\alpha Y)+Y\alpha \sinh (\alpha Y)]\nonumber \\&+\,\phi _8[\sinh (\alpha Y)+Y\alpha \cosh (\alpha Y)] \end{aligned}$$
(35)

Taking into account the displacement continuity constraints at the interfaces, \( \phi _{1,_X} \), \( \phi _{2,_X} \), \( \phi _{5,_X} \) and \( \phi _{6,_X} \) can be given by the following expressions:

$$\begin{aligned} \phi _{1,_X}= & {} \frac{1}{\cosh (\alpha h_c)}\left( \frac{1}{2}(U_{,_X}^b+U_{,_X}^a)+\frac{h_s}{2}(\theta _{,_X}^b-\theta _{,_X}^a)\right. \nonumber \\&\left. -\,U^c_{0,_X} -\phi _{4,_X} h_c \sinh (\alpha h_c)\right) \nonumber \\ \phi _{2,_X}= & {} \frac{1}{\sinh (\alpha h_c)}\left( \frac{1}{2}(U_{,_X}^b-U_{,_X}^a)+\frac{h_s}{2}(\theta _{,_X}^b+\theta _{,_X}^a)\right. \nonumber \\&\left. -\,U^c_{1,_X}\sinh (\frac{\pi }{L}h_c)-\phi _{3,_X} h_c\cosh (\alpha h_c)\right) \nonumber \\ \phi _{5,_X}= & {} \frac{1}{\cosh (\alpha h_c)}\left( \frac{1}{2}(V_{,_X}^b+V_{,_X}^a)-V^c_{0,_X}\cosh (\frac{\pi }{L}h_c)\right. \nonumber \\&\left. -\,\phi _{8,_X} h_c \sinh (\alpha h_c)\right) \nonumber \\ \phi _{6,_X}= & {} \frac{1}{\sinh (\alpha h_c)}\left( \frac{1}{2}(V_{,_X}^b-V_{,_X}^a)-V^c_{1,_X} h_c\right. \nonumber \\&\left. -\,\phi _{7,_X} h_c\cosh (\alpha h_c)\right) \end{aligned}$$
(36)

Appendix C. Useful matrices

The non-zero components of matrix \( \mathbf H \) are:

$$\begin{aligned}&H(1,4)=1 \qquad \qquad H(1,12)=-Y\\&H(2,8)=1 \qquad \qquad H(2,10)=-1\\&H(3,3)=\frac{\cosh (\alpha Y)}{2\cosh (\alpha h_c)}+\frac{\sinh (\alpha Y)}{2\sinh (\alpha h_c)}\\&H(3,4)=\frac{\cosh (\alpha Y)}{2\cosh (\alpha h_c)}-\frac{\sinh (\alpha Y)}{2\sinh (\alpha h_c)} \\&H(3,11)=\frac{h_s \cosh (\alpha Y)}{2\cosh (\alpha h_c)}+\frac{h_s\sinh (\alpha Y)}{2\sinh (\alpha h_c)} \\&H(3,12)=\frac{h_s\sinh (\alpha Y)}{2\sinh (\alpha h_c)}-\frac{h_s\cosh (\alpha Y)}{2\cosh (\alpha h_c)} \\&H(3,14)=\sinh \left( \frac{\pi }{L}Y\right) -\frac{\sinh (\alpha Y)\sinh (\frac{\pi }{L}h_c)}{\sinh (\alpha h_c)} \\&H(3,21)=Y\cosh (\alpha Y)-\frac{h_c\sinh (\alpha Y)}{\tanh (\alpha h_c)} \\&H(3,22)=Y\sinh (\alpha Y)-h_c \tanh (\alpha h_c)\cosh (\alpha Y) \\&H(3,26)=1-\frac{\cosh (\alpha Y)}{\cosh (\alpha h_c)} \\&H(4,5)=\frac{\alpha \sinh (\alpha Y)}{2\cosh (\alpha h_c)}+\frac{\alpha \cosh (\alpha Y)}{2\sinh (\alpha h_c)} \\&H(4,6)=\frac{\alpha \sinh (\alpha Y)}{2\cosh (\alpha h_c)}-\frac{\alpha \cosh (\alpha Y)}{2\sinh (\alpha h_c)} \\&H(4,15)=\frac{\pi }{L}\sinh \left( \frac{\pi }{L} Y\right) -\frac{\alpha \sinh (\alpha Y)\cosh (\frac{\pi }{L}h_c)}{\cosh (\alpha h_c)} \\&H(4,19)=\cosh (\alpha Y)+Y\alpha \sinh (\alpha Y)-\frac{h_c\alpha \cosh (\alpha Y)}{\tanh (\alpha h_c)} \\&H(4,20)=\sinh (\alpha Y)+Y\alpha \cosh (\alpha Y)\\&\quad -h_c\tanh (\alpha h_c)\alpha \sinh (\alpha Y) \\ \end{aligned}$$
$$\begin{aligned}&H(4,27)=1-\frac{h_c\alpha \cosh (\alpha Y)}{\sinh (\alpha h_c)}\\&H(5,1)=\frac{\alpha \sinh (\alpha Y)}{2\cosh (\alpha h_c)}+\frac{\alpha \cosh (\alpha Y)}{2\sinh (\alpha h_c)} \\&H(5,2)=\frac{\alpha \sinh (\alpha Y)}{2\cosh (\alpha h_c)}-\frac{\alpha \cosh (\alpha Y)}{2\sinh (\alpha h_c)} \\&H(5,7)= \frac{\sinh (\alpha Y)}{2\sinh (\alpha h_c)}+\frac{\cosh (\alpha Y)}{2\cosh (\alpha h_c)} \\&H(5,8)= \frac{\cosh (\alpha Y)}{2\cosh (\alpha h_c)}-\frac{\sinh (\alpha Y)}{2\sinh (\alpha h_c)} \\&H(5,9)=\frac{h_s\alpha \sinh (\alpha Y)}{2\cosh (\alpha h_c)}+\frac{h_s\alpha \cosh (\alpha Y)}{2\sinh (\alpha h_c)} \\&H(5,10)=\frac{h_s\alpha \cosh (\alpha Y)}{2\sinh (\alpha h_c)}-\frac{h_s\alpha \sinh (\alpha Y)}{2\cosh (\alpha h_c)} \\&H(5,13)=\frac{\pi }{L}\cosh \left( \frac{\pi }{L}Y\right) -\frac{\alpha \sinh (\frac{\pi }{L}h_c)\cosh (\alpha Y)}{\sinh (\alpha h_c)} \\&H(5,16)= \cosh \left( \frac{\pi }{L}Y\right) -\frac{\cosh (\frac{\pi }{L}h_c)\cosh (\alpha Y)}{\cosh (\alpha h_c)} \\ \end{aligned}$$
$$\begin{aligned}&H(5,17)=\cosh (\alpha Y)+Y\alpha \sinh (\alpha Y)-\frac{h_c\alpha \cosh (\alpha Y)}{\tanh (\alpha h_c)} \nonumber \\&H(5,18)=\sinh (\alpha Y)+Y\alpha \cosh (\alpha Y)\nonumber \\&\quad -h_c\alpha \tanh (\alpha h_c)\sinh (\alpha Y) \nonumber \\&H(5,23)=Y\cosh (\alpha Y)-\frac{h_c\sinh (\alpha Y)}{\tanh (\alpha h_c)}\nonumber \\&H(5,24)=Y\sinh (\alpha Y)-h_c\tanh (\alpha h_c)\cosh (\alpha Y)\nonumber \\&H(5,25)=-\frac{\sinh (\alpha Y)}{\cosh (\alpha h_c)} \nonumber \\&H(5,28)=Y-\frac{h_c\sinh (\alpha Y)}{\sinh (\alpha h_c)} \nonumber \\&H(6,3)=1 \qquad \qquad H(6,11)=-Y\nonumber \\&H(7,7)=1 \qquad \qquad H(7,9)=-1\nonumber \\ \end{aligned}$$
(37)

The constitutive matrix \( \varvec{{\mathcal {L}}} \) is defined by the following non-zero components:

$$\begin{aligned}&{\mathcal {L}}(1,1)=E_s, \qquad \qquad {\mathcal {L}}(2,2)=\mu _s, \quad \quad {\mathcal {L}}(3,3)=\Lambda _c^*+2\mu _c \nonumber \\&{\mathcal {L}}(3,4)={\mathcal {L}}(4,3)=\Lambda _c^*, \qquad \qquad \qquad {\mathcal {L}}(4,4)=\Lambda _c^*+2\mu _c, \nonumber \\&{\mathcal {L}}(5,5)=\mu _c, \qquad {\mathcal {L}}(6,6)=E_s, \qquad \qquad {\mathcal {L}}(7,7)=\mu _s\nonumber \\ \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sad Saoud, K., Le Grognec, P. An enriched 1D finite element for the buckling analysis of sandwich beam-columns. Comput Mech 57, 887–900 (2016). https://doi.org/10.1007/s00466-016-1267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1267-1

Keywords

Navigation