Abstract
The effect of the snow-albedo feedback (SAF) on 2m temperatures and their future changes in the European Alps is investigated in the ENSEMBLES regional climate models (RCMs) with a focus on the spring season. A total of 14 re-analysis-driven RCM experiments covering the period 1961–2000 and 10 GCM-driven transient climate change projections for 1950–2099 are analysed. A positive springtime SAF is found in all RCMs, but the range of the diagnosed SAF is large. Results are compared against an observation-based SAF estimate. For some RCMs, values very close to this estimate are found; other models show a considerable overestimation of the SAF. Net shortwave radiation has the largest influence of all components of the energy balance on the diagnosed SAF and can partly explain its spatial variability. Model deficiencies in reproducing 2m temperatures above snow and ice and associated cold temperature biases at high elevations seem to contribute to a SAF overestimation in several RCMs. The diagnosed SAF in the observational period strongly influences the estimated SAF contribution to twenty first century temperature changes in the European Alps. This contribution is subject to a clear elevation dependency that is governed by the elevation-dependent change in the number of snow days. Elevations of maximum SAF contribution range from 1500 to 2000 m in spring and are found above 2000 m in summer. Here, a SAF contribution to the total simulated temperature change between 0 and 0.5 °C until 2099 (multi-model mean in spring: 0.26 °C) or 0 and 14 % (multi-model mean in spring: 8 %) is obtained for models showing a realistic SAF. These numbers represent a well-funded but only approximate estimate of the SAF contribution to future warming, and a remaining contribution of model-specific SAF misrepresentations cannot be ruled out.
Similar content being viewed by others
References
Appenzeller C, Begert M, Zenklusen E, Scherrer SC (2008) Monitoring climate at Jungfraujoch in the high Swiss Alpine region. Sci Total Environ 391(2–3):262–268. doi:10.1016/j.scitotenv.2007.10.005
Armstrong RL, Brun E (2008) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, Cambridge
Ban N, Schmidli J, Schär C (2014) Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J Geophys Res Atmos 119(13):7889–7907. doi:10.1002/2014JD021478
Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys Res Lett 42(4):1165–1172. doi:10.1002/2014GL062588
Barry R, Gan TY (2011) The global cryosphere: past, present and future. Cambridge University Press, Cambridge
Barry RG, Chorley RJ (2010) Atmosphere, weather and climate, 9th edn. Routledge, London and New York
Boone A, Etchevers P (2001) An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: local-scale evaluation at an Alpine site. J Hydrometeorol 2(4):374–394. doi:10.1175/1525-7541(2001)002<0374:AIOTSS>2.0.CO;2
Bradley RS, Keimig FT, Diaz HF (2004) Projected temperature changes along the American cordillera and the planned GCOS network. Geophys Res Lett 31:L16210. doi:10.1029/2004GL020229
Buzzi M (2008) Challenges in operational numerical weather prediction at high resolution in complex terrain. Ph.D. thesis, ETH Zurich
Ceppi P, Scherrer SC, Fischer AM, Appenzeller C (2012) Revisiting Swiss temperature trends 1959–2008. Int J Climatol 32(2):203–213. doi:10.1002/joc.2260
Cess RD, Potter GL, Zhang M-H, Blanchet J-P, Chalita S, Colman R, Dazlich DA, del Genio AD, Dymnikov V, Galin V, Jerrett D, Keup E, Lacis AA, Le Treut H, Liang X-Z, Mahfouf J-F, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette J-J, Norris PM, Randall DA, Rikus L, Roeckner E, Royer J-F, Schlese U, Sheinin DA, Slingo JM, Sokolov AP, Taylor KE, Washington WM, T WR, Yagai I (1991) Interpretation of snow-climate feedback as produced by 17 general circulation models. Science 253(5022):888–892. doi:10.1126/science.253.5022.888
Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Colman R (2003) A comparison of climate feedbacks in general circulation models. Clim Dyn 20(7–8):865–873. doi:10.1007/s00382-003-0310-z
Doms G, Frstner J, Heise E, Herzog H-J, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz J-P, Vogel G (eds) (2011) A description of the nonhydrostatic regional COSMO Model. Part II: physical parameterization, COSMO Consortium for small-scale modelling. www.cosmo-model.org
Fernandes R, Zhao H, Wang X, Key J, Qu X, Hall A (2009) Controls on Northern Hemisphere snow albedo feedback quantified using satellite Earth oservations. Geophys Res Lett 36:L21702. doi:10.1029/2009GL040057
Giorgi F, Hurrell JW, Marinucci MR, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10(2):288–296. doi:10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2
Graversen RG, Langen PL, Mauritsen T (2014) Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. J Clim 27(12):4433–4450. doi:10.1175/JCLI-D-13-00551.1
Hall A (2004) The role of surface albedo feedback in climate. J Clim 17(7):1550–1568. doi:10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2
Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578. doi:10.1007/s10113-013-0499-2
Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Clim Change 4:570–576. doi:10.1038/nclimate2258
Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Change 112(2):189–215. doi:10.1007/s10584-011-0195-5
Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modelling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7(1):1297–1333. doi:10.5194/gmd-7-1297-2014
Kotlarski S, Lüthi D, Schär C (2015) The elevation dependency of 21st century European climate change: an RCM ensemble perspective. Int J Climatol. doi:10.1002/joc.4254
Laternser M, Schneebeli M (2003) Long-term snow climate trends of the Swiss Alps (1931–99). Int J Climatol 23(7):733–750. doi:10.1002/joc.912
Lawrence DM, Slater AG (2010) The contribution of snow condition trends to future ground climate. Clim Dyn 34(7–8):969–981. doi:10.1007/s00382-009-0537-4
Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang Z-L, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst 3:M03001. doi:10.1029/2011MS000045
van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK
Marty C (2008) Regime shift of snow days in Switzerland. Geophys Res Lett 35:L12501. doi:10.1029/2008GL033998
Nakićenović N, Swart R (eds) (2000) Emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Ohmura A (2001) Physical basis for the temperature-based melt-index methhod. J Appl Meteorol 40(4):753–761. doi:10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2
Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York
Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schöner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nature Clim Change 5(5):424–430. doi:10.1038/nclimate2563
Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:L14701. doi:10.1029/2008GL034026
Pirrazini R (2009) Challenges in snow and ice albedo parameterizations. Geophysica 45(1–2):41–62
Qu X, Hall A (2007) What controls the strength of snow-albedo feedback? J Climate 20(15):3971–3981. doi:10.1175/JCLI4186.1
Räisänen J, Eklund J (2012) 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dyn 38(11–12):2575–2591. doi:10.1007/s00382-011-1076-3
Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348. doi:10.1127/0941-2948/2008/0309
Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss Alpine snow days: the role of local- and large-scale climate variability. Geophys Res Lett 31:L13215. doi:10.1029/2004GL020255
Scherrer SC, Ceppi P, Croci-Maspoli M, Appenzeller C (2012) Snow-albedo feedback and Swiss spring temperature trends. Theor Appl Climatol 110(4):509–516. doi:10.1007/s00704-012-0712-0
Scherrer SC, Wüthrich C, Croci-Maspoli M, Weingartner R, Appenzeller C (2013) Snow variability in the Swiss Alps 1864–2009. Int J Clim 33(15):3162–3173. doi:10.1002/joc.3653
Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19(14):3354–3360. doi:10.1175/JCLI3799.1
Steger C, Kotlarski S, Jonas T, Schär C (2013) Alpine snow cover in a changing climate: a regional climate model perspective. Clim Dyn 41(3–4):735–754. doi:10.1007/s00382-012-1545-3
Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.1256/qj.04.176
US Geological Survey (2014) Global 30 arc-second elevation (GTOPO30). https://lta.cr.usgs.gov/GTOPO30
Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, J B, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Winton M (2006) Surface albedo feedback estimates for the AR4 climate models. J Clim 19(3):359–365. doi:10.1175/JCLI3624.1
Acknowledgments
The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract No. 505539) whose support is gratefully acknowledged. This research was partly funded by the Swiss National Science Foundation through the SNSF Sinergia project CRSII2_136279 “The Evolution of Mountain Permafrost in Switzerland” (TEMPS).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Winter, K.J.P.M., Kotlarski, S., Scherrer, S.C. et al. The Alpine snow-albedo feedback in regional climate models. Clim Dyn 48, 1109–1124 (2017). https://doi.org/10.1007/s00382-016-3130-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-016-3130-7