[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Two-dimensional shape retrieval using the distribution of extrema of Laplacian eigenfunctions

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose a new method using the distribution of extrema of Laplacian eigenfunctions for two-dimensional (2D) shape description and matching. We construct a weighted directed graph, which we call signed natural neighbor graph, to represent a Laplacian eigenfunction of a shape. The nodes of this sparse graph are the extrema of the corresponding eigenfunction, and the edge weights are defined by signed natural neighbor coordinates derived from the local spatial arrangement of extrema. We construct the signed natural neighbor graphs defined by a small number of low-frequency Laplacian eigenfunctions of a shape to describe it. This shape descriptor is invariant under rigid transformations and uniform scaling, and is also insensitive to minor boundary deformations. When using our shape descriptor for matching two shapes, we determine their similarity by comparing the graphs induced by corresponding Laplacian eigenfunctions of the two shapes. Our experimental shape-matching results demonstrate that our method is effective for 2D shape retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. We do not consider the first Laplacian eigenfunction because this eigenfunction is constant.

  2. For the results generated by ShapeDNA that are shown in this paper, we tested using different numbers of Laplacian eigenvalues to do shape retrieval and chose the best results.

  3. The six shape classes from the Kimia-25 database consist of different numbers of shapes, and the largest number is five. For convenience, we compute the retrieval rate for the whole database by counting the correct matches among the first four retrieved shapes for all the 25 shapes.

References

  1. Adamek, T., O’Connor, N.E.: A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circuits Syst. Video Technol. 14(5), 742–753 (2004)

    Article  Google Scholar 

  2. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  3. Chavel, I.: Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, vol. 115. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  4. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience Publishers, New York (1953)

    MATH  Google Scholar 

  5. Cui, M., Wonka, P., Razdan, A., Hu, J.: A new image registration scheme based on curvature scale space curve matching. Vis. Computer 23(8), 607–618 (2007)

    Article  Google Scholar 

  6. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)

    Article  MathSciNet  Google Scholar 

  7. Gdalyahu, Y., Weinshall, D.: Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1312–1328 (1999)

    Article  Google Scholar 

  8. Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds. Invent Math. 110(1), 1–22 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grauman, K., Darrell, T.: Fast contour matching using approximate earth mover’s distance. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 220–227 (2004)

  10. Hu, J., Hua, J.: Pose analysis using spectral geometry. Vis. Computer 29(9), 949–958 (2013)

    Article  Google Scholar 

  11. Ion, A., Artner, N.M., Peyré, G., Kropatsch, W.G., Cohen, L.D.: Matching 2D and 3D articulated shapes using the eccentricity transform. Comput. Vis. Image Underst. 115(6), 817–834 (2011)

    Article  Google Scholar 

  12. Isaacs, J.C., Roberts, R.G.: Metrics of the Laplace–Beltrami eigenfunctions for 2D shape matching. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 3347–3352 (2011)

  13. Kim, W.Y., Kim, Y.S.: A region-based shape descriptor using Zernike moments. Signal Process. Image Commun. 16(1–2), 95–102 (2000)

    Article  Google Scholar 

  14. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laiche, N., Larabi, S., Ladraa, F., Khadraoui, A.: Curve normalization for shape retrieval. Signal Process. Image Commun. 29(4), 556–571 (2014)

    Article  Google Scholar 

  16. Latecki, L.J., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 424–429 (2000)

  17. Lévy, B.: Laplace–Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, invited talk, SMI ’06, p. 13 (2006)

  18. Li, S., Lee, M.C., Pun, C.M.: Complex Zernike moments features for shape-based image retrieval. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 39(1), 227–237 (2009)

    Article  Google Scholar 

  19. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell 29(2), 286–299 (2007)

    Article  Google Scholar 

  20. Mokhatarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space. In: Smeulders, A.W.M., Jain, R. (eds.) Images Databases and Multi-media Search, Software Engineering and Knowledge Engineering, vol. 8, pp. 51–58. World Scientific, Singapore (1997)

    Google Scholar 

  21. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  22. Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York (1992)

    MATH  Google Scholar 

  23. O’Rourke, J.: Computational geometry column 35. SIGACT News 30(2), 31–32 (1999)

    Article  Google Scholar 

  24. Peinecke, N., Wolter, F.E., Reuter, M.: Laplace spectra as fingerprints for image recognition. Computer-Aided Design 39(6), 460–476 (2007)

    Article  Google Scholar 

  25. Peyré, G.: Toolbox fast marching. MATLAB Central File Exchange Select (2009)

  26. Peyré, G.: Toolbox graph. MATLAB Central File Exchange Select (2009)

  27. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace–Beltrami eigenfunctions. Int. J. Comput. Vis. 89(2), 287–308 (2009)

    Google Scholar 

  28. Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace–Beltrami operators for shape analysis and segmentation. Comput. Graph. 33(3), 381–390 (2009)

    Article  Google Scholar 

  29. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace–Beltrami spectra as “Shape-DNA” of surfaces and solids. Computer-Aided Design 38(4), 342–366 (2006)

    Article  Google Scholar 

  30. Rustamov, R.M.: Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP’07, pp. 225–233 (2007)

  31. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–571 (2004)

    Article  Google Scholar 

  32. Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of image databases. J. Vis. Commun. Image Represent. 9(4), 366–380 (1998)

    Article  Google Scholar 

  33. Shekar, B., Pilar, B.: Shape representation and classification through pattern spectrum and local binary pattern—a decision level fusion approach. In: Proceedings of the Fifth International Conference on Signal and Image Processing (ICSIP), pp. 218–224 (2014)

  34. Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering. Lecture notes in computer science, vol. 1148, pp. 203–222. Springer, New York (1996)

    Chapter  Google Scholar 

  35. Shu, X., Jun Wu, X.: A novel contour descriptor for 2D shape matching and its application to image retrieval. Image Vis. Comput. 29(4), 286–294 (2011)

    Article  Google Scholar 

  36. Sibson, R.: A brief description of natural neighbour interpolation(chapter 2). In: Barnett, V. (ed.) Interpreting Multivariate Data, vol. 21, pp. 21–36. Wiley, New York (1981)

    Google Scholar 

  37. Taubin, G.: Geometric signal processing on polygonal meshes. In: Eurographics 2000 State of the Art Report (STAR), pp. 81–96 (2000)

  38. Taylor, M.E.: Partial Differential Equations I: Basic Theory. Applied functional analysis: applications to mathematical physics. U.S. Government Printing Office (1996)

  39. Wang, J., Bai, X., You, X., Liu, W., Latecki, L.J.: Shape matching and classification using height functions. Pattern Recognit. Lett. 33(2), 134–143 (2012)

    Article  Google Scholar 

  40. Xu, C., Liu, J., Tang, X.: 2D shape matching by contour flexibility. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 180–186 (2009)

    Article  Google Scholar 

  41. Zhang, D., Lu, G.: Shape-based image retrieval using generic Fourier descriptor. Signal Process. Image Commun. 17(10), 825–848 (2002)

    Article  Google Scholar 

  42. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognit. 37(1), 1–19 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Martin Reuter for making available his “ShapeDNA-tria” software, Jonathan Shewchuk for his “Triangle” program and Gabriel Peyré for his toolboxes—“Toolbox Fast Marching” and “Toolbox Graph”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Niu.

Additional information

Dongmei Niu acknowledges fellowship support from the China Scholarship Council (CSC). Caiming Zhang appreciates the supports from the National Nature Science Foundation of China (61373078) and NSFC Joint Fund with Guangdong (U1201258).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, D., Bremer, PT., Lindstrom, P. et al. Two-dimensional shape retrieval using the distribution of extrema of Laplacian eigenfunctions. Vis Comput 33, 607–624 (2017). https://doi.org/10.1007/s00371-016-1211-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1211-6

Keywords

Navigation