[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Present paper undergoes with the analysis of the post-buckling behaviors of multi-scale hybrid nanocomposite beam-type structures manufactured from both macro- and nanoscale reinforcing elements, namely carbon fibers and carbon nanotubes (CNTs), respectively, in addition to the host polymeric matrix. The equivalent material properties of the hybrid nanocomposite will be gathered utilizing a two-step micromechanical scheme while the influences of the CNTs’ agglomeration phenomenon are covered. Continued by using the concept of the virtual work’s principle, the nonlinear governing equation of the motion will be derived on the basis of the combination of the von Karman hypothesis with the well-known Euler–Bernoulli beam theory while the beam is rested on a three-parameter nonlinear foundation. It is noteworthy that the impact of the existence of an initial deflection in the continuous system is included in the present study, too. At the end of the manuscript, the obtained governing equation will be solved analytically within the framework of the Galerkin’s method once both simply supported–simply supported (S–S) and clamped–clamped (C–C) boundary conditions are considered. It is shown that the stability response of the NC structure can be deeply influenced tailoring the agglomeration parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Valiev R (2002) Nanomaterial advantage. Nature 419(6910):887–889. https://doi.org/10.1038/419887a

    Article  Google Scholar 

  2. Silvestre J, Silvestre N, de Brito J (2016) Polymer nanocomposites for structural applications: recent trends and new perspectives. Mech Adv Mater Struct 23(11):1263–1277. https://doi.org/10.1080/15376494.2015.1068406

    Article  Google Scholar 

  3. Ebrahimi F, Dabbagh A (2020) Mechanics of nanocomposites: homogenization and analysis, 1st edn. CRC Press, Boca Raton. https://doi.org/10.1201/9780429316791

    Book  Google Scholar 

  4. Shi D-L, Feng X-Q, Huang YY, Hwang K-C, Gao H (2004) The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J Eng Mater Technol 126(3):250–257. https://doi.org/10.1115/1.1751182

    Article  Google Scholar 

  5. Ke L-L, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92(3):676–683. https://doi.org/10.1016/j.compstruct.2009.09.024

    Article  Google Scholar 

  6. Yas MH, Samadi N (2012) Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int J Press Vessels Pip 98:119–128. https://doi.org/10.1016/j.ijpvp.2012.07.012

    Article  Google Scholar 

  7. Wattanasakulpong N, Ungbhakorn V (2013) Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput Mater Sci 71:201–208. https://doi.org/10.1016/j.commatsci.2013.01.028

    Article  Google Scholar 

  8. Shen H-S, Xiang Y (2014) Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Compos B Eng 67:50–61. https://doi.org/10.1016/j.compositesb.2014.06.020

    Article  Google Scholar 

  9. Jam JE, Kiani Y (2015) Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos Struct 132:35–43. https://doi.org/10.1016/j.compstruct.2015.04.045

    Article  Google Scholar 

  10. Lei ZX, Zhang LW, Liew KM (2015) Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos Struct 127:245–259. https://doi.org/10.1016/j.compstruct.2015.03.019

    Article  Google Scholar 

  11. Tornabene F, Fantuzzi N, Bacciocchi M, Viola E (2016) Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos B Eng 89:187–218. https://doi.org/10.1016/j.compositesb.2015.11.016

    Article  Google Scholar 

  12. Ansari R, Torabi J, Faghih Shojaei M (2017) Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Compos B Eng 109:197–213. https://doi.org/10.1016/j.compositesb.2016.10.050

    Article  Google Scholar 

  13. García-Macías E, Rodríguez-Tembleque L, Castro-Triguero R, Sáez A (2017) Eshelby–Mori–Tanaka approach for post-buckling analysis of axially compressed functionally graded CNT/polymer composite cylindrical panels. Compos B Eng 128:208–224. https://doi.org/10.1016/j.compositesb.2017.07.016

    Article  Google Scholar 

  14. Barati MR, Zenkour AM (2017) Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Compos Struct 181:194–202. https://doi.org/10.1016/j.compstruct.2017.08.082

    Article  Google Scholar 

  15. Shen H-S, Xiang Y, Lin F, Hui D (2017) Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Compos B Eng 119:67–78. https://doi.org/10.1016/j.compositesb.2017.03.020

    Article  MATH  Google Scholar 

  16. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588. https://doi.org/10.1016/j.compstruct.2016.09.070

    Article  Google Scholar 

  17. Yang J, Wu H, Kitipornchai S (2017) Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct 161:111–118. https://doi.org/10.1016/j.compstruct.2016.11.048

    Article  Google Scholar 

  18. Ebrahimi F, Farazmandnia N (2018) Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams. Steel Compos Struct 27(2):149–159. https://doi.org/10.12989/SCS.2018.27.2.149

    Article  Google Scholar 

  19. Kiani Y, Mirzaei M (2018) Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements. Compos Struct 186:114–122. https://doi.org/10.1016/j.compstruct.2017.11.086

    Article  Google Scholar 

  20. Liu D, Kitipornchai S, Chen W, Yang J (2018) Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Compos Struct 189:560–569. https://doi.org/10.1016/j.compstruct.2018.01.106

    Article  Google Scholar 

  21. Shen H-S, Xiang Y, Fan Y, Hui D (2018) Nonlinear bending analysis of FG–GRC laminated cylindrical panels on elastic foundations in thermal environments. Compos B Eng 141:148–157. https://doi.org/10.1016/j.compositesb.2017.12.048

    Article  Google Scholar 

  22. Barati MR, Zenkour AM (2019) Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mech Adv Mater Struct 26(18):1580–1588. https://doi.org/10.1080/15376494.2018.1444235

    Article  Google Scholar 

  23. Ebrahimi F, Dabbagh A, Civalek Ö (2019) Vibration analysis of magnetically affected graphene oxide-reinforced nanocomposite beams. J Vib Control 25(23–24):2837–2849. https://doi.org/10.1177/1077546319861002

    Article  MathSciNet  Google Scholar 

  24. Ebrahimi F, Nouraei M, Dabbagh A (2019) Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1660185

    Article  Google Scholar 

  25. Ebrahimi F, Nouraei M, Dabbagh A (2019) Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates. Eng Comput. https://doi.org/10.1007/s00366-019-00737-w

    Article  Google Scholar 

  26. Rafiee M, Liu XF, He XQ, Kitipornchai S (2014) Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. J Sound Vib 333(14):3236–3251. https://doi.org/10.1016/j.jsv.2014.02.033

    Article  Google Scholar 

  27. He XQ, Rafiee M, Mareishi S, Liew KM (2015) Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams. Compos Struct 131:1111–1123. https://doi.org/10.1016/j.compstruct.2015.06.038

    Article  Google Scholar 

  28. Rafiee M, Nitzsche F, Labrosse M (2016) Rotating nanocomposite thin-walled beams undergoing large deformation. Compos Struct 150:191–199. https://doi.org/10.1016/j.compstruct.2016.05.014

    Article  Google Scholar 

  29. Ebrahimi F, Habibi S (2018) Nonlinear eccentric low-velocity impact response of a polymer–carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments. Mech Adv Mater Struct 25(5):425–438. https://doi.org/10.1080/15376494.2017.1285453

    Article  Google Scholar 

  30. Ebrahimi F, Dabbagh A (2019) On thermo-mechanical vibration analysis of multi-scale hybrid composite beams. J Vib Control 25(4):933–945. https://doi.org/10.1177/1077546318806800

    Article  MathSciNet  Google Scholar 

  31. Dabbagh A, Rastgoo A, Ebrahimi F (2019) Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory. Thin-Walled Struct 140:304–317. https://doi.org/10.1016/j.tws.2019.03.031

    Article  Google Scholar 

  32. Ebrahimi F, Dabbagh A (2019) An analytical solution for static stability of multi-scale hybrid nanocomposite plates. Eng Comput. https://doi.org/10.1007/s00366-019-00840-y

    Article  Google Scholar 

  33. Ebrahimi F, Dabbagh A (2019) Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin–Tsai homogenization model. Compos B Eng 173:106955. https://doi.org/10.1016/j.compositesb.2019.106955

    Article  Google Scholar 

  34. Ebrahimi F, Dabbagh A, Rastgoo A (2019) Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1692665

    Article  Google Scholar 

  35. Karimiasl M, Ebrahimi F, Mahesh V (2019) Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell. Thin-Walled Struct 143:106152. https://doi.org/10.1016/j.tws.2019.04.044

    Article  Google Scholar 

  36. Dabbagh A, Rastgoo A, Ebrahimi F (2020) Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1692666

    Article  Google Scholar 

  37. Dabbagh A, Rastgoo A, Ebrahimi F (2020) Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory. Eng Comput. https://doi.org/10.1007/s00366-020-00939-7

    Article  Google Scholar 

  38. Ebrahimi F, Dabbagh A, Rastgoo A, Rabczuk T (2020) Agglomeration effects on static stability analysis of multi-scale hybrid nanocomposite plates. Comput Mater Contin. https://doi.org/10.32604/cmc.2020.07947

    Article  Google Scholar 

  39. Rafiee R, Firouzbakht V (2014) Multi-scale modeling of carbon nanotube reinforced polymers using irregular tessellation technique. Mech Mater 78:74–84. https://doi.org/10.1016/j.mechmat.2014.07.021

    Article  Google Scholar 

  40. Wang L, Hu H (2005) Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B 71(19):195412. https://doi.org/10.1103/PhysRevB.71.195412

    Article  Google Scholar 

  41. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574. https://doi.org/10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  42. Bessaim A, Houari MSA, Bernard F, Tounsi A (2015) A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates. Struct Eng Mech 56(2):223–240. https://doi.org/10.12989/sem.2015.56.2.223

    Article  Google Scholar 

  43. Houari MSA, Bessaim A, Bernard F, Tounsi A, Mahmoud SR (2018) Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter. Steel Compos Struct 28(1):13–24. https://doi.org/10.12989/scs.2018.28.1.013

    Article  Google Scholar 

  44. Khiloun M, Bousahla AA, Kaci A, Bessaim A, Tounsi A, Mahmoud SR (2019) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Comput. https://doi.org/10.1007/s00366-019-00732-1

    Article  Google Scholar 

  45. Soltani K, Bessaim A, Houari MSA, Kaci A, Benguediab M, Tounsi A, Alhodaly MS (2019) A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations. Steel Compos Struct 30(1):13–29. https://doi.org/10.12989/scs.2019.30.1.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabbagh, A., Rastgoo, A. & Ebrahimi, F. Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate. Engineering with Computers 38, 301–314 (2022). https://doi.org/10.1007/s00366-020-01064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01064-1

Keywords