Abstract
We propose and characterize a quantum interface between telecommunication wavelengths (1311 nm) and an Yb\({}^{+}\)-dipole transition (369.5 nm) based on a second-order sum-frequency process in a PPKTP waveguide. An external (internal) conversion efficiency above 5 % (10 %) is shown using classical bright light.
Similar content being viewed by others
References
H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008)
S. Olmschenk, D. Hayes, D.N. Matsukevich, P. Maunz, D.L. Moehring, C. Monroe, Quantum logic between distant trapped ions. Int. J. Quantum Inf. 8, 337 (2010)
P. Kumar, Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990)
J. Huang, P. Kumar, Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992)
A.P. Vandevender, P.G. Kwiat, High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004)
M.A. Albota, F.N.C. Wong, Efficient single-photon counting at 1.55\(\mu\)m by means of frequency upconversion. Opt. Lett. 29, 1449–1451 (2004)
M.G. Raymer, K. Srinivasan, Manipulating the color and shape of single photons. Phys. Today 65, 32 (2012)
M.T. Rakher, L. Ma, O. Slattery, X. Tang, K. Srinivasan, Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786–791 (2010)
S. Ates, I. Agha, A. Gulinatti, I. Rech, M.T. Rakher, A. Badolato, K. Srinivasan, Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012)
S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)
R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun. 2, 1544 (2011)
S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden, A photonic quantum information interface. Nature 437, 116–120 (2005)
C.E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, R. Schnabel, Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. Phys. Rev. Lett. 112, 073602 (2014)
D. Kong, Z. Li, S. Wang, X. Wang, Y. Li, Quantum frequency down-conversion of bright amplitude-squeezed states. Opt. Express 22, 24192–24201 (2014)
S. Wang, V. Pasiskevicius, F. Laurell, H. Karlsson, Ultraviolet generation by first-order frequency doubling in periodically poled \(\text{ KTiOPO }_4\). Opt. Lett. 23, 1883–1885 (1998)
P. Qing, X. Yang, Long pulse, high energy output at 365 nm from an frequency-doubled Alexandrite laser. Opt. Commun. 200, 309–314 (2001)
D.B. Oh, Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection. Opt. Lett. 20, 100–102 (1995)
L. Corner, J. Gibb, G. Hancock, A. Hutchinson, V. Kasyutich, R. Peverall, G. Ritchie, Sum frequency generation at 309nm using a violet and a near-IR DFB diode laser for detection of OH. Appl. Phys. B 74, 441–444 (2002)
D.J. Berkeland, F.C. Cruz, J.C. Bergquist, Sum-frequency generation of continuous-wave light at 194 nm. Appl. Opt. 36, 4159–4162 (1997)
N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z.-G. Hu, M. Yoshimura, Y. Mori, T. Sasaki, 200-mw-average power ultraviolet generation at 0.193 \(\mu\)m in \(\text{ K }_2\text{ Al }_2\text{ B }_2 \text{ O }_7\). Appl. Opt. 42, 2716–2719 (2003)
H. Kumagai, K. Midorikawa, T. Iwane, M. Obara, Efficient sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual wavelength enhancement. Opt. Lett. 28, 1969–1971 (2003)
J. Franzke, Sum frequency generation at 365 nm by two diode lasers applied to the detection of mercury. Spectrochim. Acta Part B Atom. Spectrosc. 53, 1595–1599 (1998)
R.V. Roussev, C. Langrock, J.R. Kurz, M.M. Fejer, Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. Opt. Lett. 29, 1518–1520 (2004)
R. Clark, T. Kim, J. Kim, Double-stage frequency down-conversion system for distribution of ion-photon entanglement over long distances, in 2011 IEEE Photonics Society Summer Topical Meeting Series, (IEEE, 2011)
M. Pysher, R. Bloomer, C.M. Kaleva, T.D. Roberts, P. Battle, O. Pfister, Broadband amplitude squeezing in a periodically poled \(\text{ KTiOPO }_4\) waveguide. Opt. Lett. 34, 256–258 (2009)
N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P.M. Ledingham, H. de Riedmatten, Storage of up-converted telecom photons in a doped crystal. New J. Phys. 16, 113021 (2014)
J.S. Pelc, L. Ma, C.R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, M.M. Fejer, Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express 19, 21445–21456 (2011)
G.E. Kugel, F. Brehat, B. Wyncke, M.D. Fontana, G. Marnier, C. Carabatos-Nedelec, J. Mangin, The vibrational spectrum of a KTiOPO4 single crystal studied by raman and infrared reflectivity spectroscopy. J. Phys. C Solid State Phys. 21, 5565 (1988)
D.L. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, D.N. Matsukevich, L.-M. Duan, C. Monroe, Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)
R. Maiwald, A. Golla, M. Fischer, M. Bader, S. Heugel, B. Chalopin, M. Sondermann, G. Leuchs, Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A 86, 043431 (2012)
N. Trautmann, J.Z. Bernád, M. Sondermann, G. Alber, L.L. Sánchez-Soto, G. Leuchs, Generation of entangled matter qubits in two opposing parabolic mirrors. Phys. Rev. A 90, 063814 (2014)
J.D. Bierlein, A. Ferretti, L.H. Brixner, W.Y. Hsu, Fabrication and characterization of optical waveguides in \(\text{ KTiOPO }_4\). Appl. Phys. Lett. 50, 1216–1218 (1987)
K. Kato, E. Takaoka, Sellmeier and thermo-optic dispersion formulas for KTP. Appl. Opt. 41, 5040–5044 (2002)
P.T. Callahan, K. Safak, P. Battle, T.D. Roberts, F.X. Kärtner, Fiber-coupled balanced optical cross-correlator using PPKTP waveguides. Opt. Express 22, 9749–9758 (2014)
K.A. Fedorova, G.S. Sokolovskii, P.R. Battle, D.A. Livshits, E.U. Rafailov, 574–647 nm wavelength tuning by second-harmonic generation from diode-pumped PPKTP waveguides. Opt. Lett. 40, 835–838 (2015)
R. Roussev, Optical-frequency mixers in periodically poled lithium niobate: Materials, modeling and characterization, Ph.D. thesis, Stanford University (2006)
A.H. Reshak, I.V. Kityk, S. Auluck, Investigation of the linear and nonlinear optical susceptibilities of \(\text{ KTiOPO }_4\) single crystals: Theory and experiment. J. Phys. Chem. B 114, 16705–16712 (2010)
G. Hansson, H. Karlsson, S. Wang, F. Laurell, Transmission measurements in KTP and isomorphic compounds. Appl. Opt. 39, 5058–5069 (2000)
S. Wang, V. Pasiskevicius, F. Laurell, Dynamics of green light-induced infrared absorption in \(\text{ KTiOPO }_4\) and periodically poled \(\text{ KTiOPO }_4\). J. Appl. Phys. 96, 2023–2028 (2004)
Y. Colombe, D.H. Slichter, A.C. Wilson, D. Leibfried, D.J. Wineland, Single-mode optical fiber for high-power, low-loss uv transmission. Opt. Express 22, 19783–19793 (2014)
Acknowledgments
We thank Harald Herrmann for helpful discussions and also the reviewers for useful comments, contributing to improve the manuscript. We acknowledge financial support provided by the German Bundesministerium für Bildung und Forschung within the QuOReP and Q.com-Q framework.
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.
Rights and permissions
About this article
Cite this article
Rütz, H., Luo, KH., Suche, H. et al. Towards a quantum interface between telecommunication and UV wavelengths: design and classical performance. Appl. Phys. B 122, 13 (2016). https://doi.org/10.1007/s00340-016-6325-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00340-016-6325-z