[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Direction of visual shift and hand congruency enhance spatial realignment during visuomotor adaptation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Although prism adaptation has been studied extensively for over 100 years to better understand how the motor system adapts to sensory perturbations, very few studies have systematically studied how the combination of the hand used to adapt, and the direction of visual shift, might influence adaptation. Given that sensory inputs and motor outputs from the same side are processed (at least initially) in the same hemisphere, we wondered whether there might be differences in how people adapt when the hand used and the direction of visual shift were congruent (e.g., adapting to rightward shifting prisms with the right hand), compared to incongruent (e.g., adapting to rightward shifting prisms with the left hand). In Experiment 1 we re-analyzed a previously published dataset (Striemer, Enns, and Whitwell Striemer et al., Cortex 115:201–215, 2019a) in which healthy adults (n = 17) adapted to 17° leftward or rightward optically displacing prisms using their left or right hand (tested in separate sessions, counterbalanced). Our results revealed a “congruency effect” such that adaptation aftereffects were significantly larger for reaches performed without visual feedback (i.e., straight-ahead pointing) when the direction of prism shift and the hand used were congruent, compared to incongruent. We replicated this same congruency effect in Experiment 2 in a new group of participants (n = 25). We suggest that a better understanding of the cognitive and neural mechanisms underlying the congruency effect will allow researchers to build more precise models of visuomotor learning, and may lead to the development of more effective applications of prism adaptation for the treatment of attentional disorders following brain damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The authors confirm that the summarized group data supporting the findings of this study are available within the article or its Supplementary Material. Raw data and individual participant data cannot be made available because of ethical restrictions. Specifically, all participants in the study signed a consent form which indicated that only the researchers involved in the study would have access to individual participant data. Requests for access to individual participant data must be submitted to the corresponding author, and data sharing agreements must be submitted to MacEwan University Research Office.

References

  • Andersen RA, Andersen KN, Hwang EJ, Hauschild M (2014) Optic ataxia: from Balint’s syndrome to the parietal reach region. Neuron 81(5):967–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arcaro MJ, Thaler L, Quinlan DJ, Monaco S, Khan S, Valyear KF, Culham JC (2018) Psychophysical and neuroimaging responses to moving stimuli in a patient with the Riddoch phenomenon due to bilateral visual cortex lesions. Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2018.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Baizer JS, Kralj-Hans I, Glickstein M (1999) Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol 81(4):1960–1965

    Article  CAS  PubMed  Google Scholar 

  • Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285(5425):257–260

    Article  CAS  PubMed  Google Scholar 

  • Bossom J (1965) The effect of brain lesions on prism-adaptation in monkey. Psychonomic Sci 2(1–12):45–46

    Article  Google Scholar 

  • Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44(13):2594–2606

    Article  PubMed  Google Scholar 

  • Chapman HL, Eramudugolla R, Gavrilescu M, Strudwick MW, Loftus A, Cunnington R, Mattingley JB (2010) Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms. Neuropsychologia 48(9):2595–2601. https://doi.org/10.1016/j.neuropsychologia.2010.05.006

    Article  PubMed  Google Scholar 

  • Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383(6601):618–621

    Article  CAS  PubMed  Google Scholar 

  • Colent C, Pisella L, Bernieri C, Rode G, Rossetti Y (2000) Cognitive bias induced by visuo-motor adaptation to prisms: a simulation of unilateral neglect in normal individuals? Neuroreport 11(9):1899–1902

    Article  CAS  PubMed  Google Scholar 

  • Culham JC, Cavina-Pratesi C, Singhal A (2006) The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia 44(13):2668–2684

    Article  PubMed  Google Scholar 

  • Danckert J, Ferber S, Goodale MA (2008) Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. Eur J Neurosci 28(8):1696–1704. https://doi.org/10.1111/j.1460-9568.2008.06460.x

    Article  PubMed  Google Scholar 

  • Dijkerman HC, McIntosh RD, Anema HA, de Haan EH, Kappelle LJ, Milner AD (2006) Reaching errors in optic ataxia are linked to eye position rather than head or body position. Neuropsychologia 44(13):2766–2773

    Article  CAS  PubMed  Google Scholar 

  • Farron N, Clarke S, Crottaz-Herbette S (2022) Does hand modulate the reshaping of the attentional system during rightward prism adaptation? An fMRI study. Front Psychol 13:909815

    Article  PubMed  PubMed Central  Google Scholar 

  • Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  • Freedman DJ, Ibos G (2018) An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex. Neuron 97(6):1219–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herlihey TA, Black SE, Ferber S (2012) Terminal, but not concurrent prism exposure produces perceptual aftereffects in healthy young adults. Neuropsychologia 50(12):2789–2795. https://doi.org/10.1016/j.neuropsychologia.2012.08.009

    Article  PubMed  Google Scholar 

  • Holm S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian J Statist. 65–70

  • Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40(4):461–535

    Article  Google Scholar 

  • JASP-Team. (2022). JASP (version 0.16.3) [computer software]

  • Jinkins JR (2000) Atlas of neuroradiologic embryology, anatomy, and variants. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Khan AZ, Pisella L, Vighetto A, Cotton F, Luaute J, Boisson D, Rossetti Y (2005) Optic ataxia errors depend on remapped, not viewed, target location. Nature Neurosci 8(4):418–420

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Whishaw IQ. (2009). Fundamentals of human neuropsychology: Macmillan.

  • Luaute J, Schwartz S, Rossetti Y, Spiridon M, Rode G, Boisson D, Vuilleumier P (2009) Dynamic changes in brain activity during prism adaptation. J Neurosci 29(1):169–178. https://doi.org/10.1523/JNEUROSCI.3054-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms I Focal olivocerebellar lesions impair adaptation. Brain 119(Pt 4):1183–1198

    Article  PubMed  Google Scholar 

  • Michel C, Pisella L, Halligan PW, Luaute J, Rode G, Boisson D, Rossetti Y (2003) Simulating unilateral neglect in normals using prism adaptation: implications for theory. Neuropsychologia 41(1):25–39

    Article  PubMed  Google Scholar 

  • Michel C, Vernet P, Courtine G, Ballay Y, Pozzo T (2008) Asymmetrical after-effects of prism adaptation during goal oriented locomotion. Exp Brain Res 185:259–268

    Article  PubMed  Google Scholar 

  • Mutha PK, Sainburg RL, Haaland KY (2011) Left parietal regions are critical for adaptive visuomotor control. J Neurosci 31(19):6972–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolte J (2002) The human brain: an introduction to its functional anatomy, 5th edn. Mosby Inc., St. Louis

    Google Scholar 

  • Norris SA, Hathaway EN, Taylor JA, Thach WT (2011) Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations. J Neurophysiol 105(5):2248–2259. https://doi.org/10.1152/jn.01009.2010

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisella L, Michel C, Grea H, Tilikete C, Vighetto A, Rossetti Y (2004) Preserved prism adaptation in bilateral optic ataxia: strategic versus adaptive reaction to prisms. Experiment Brain Res 156(4):399–408

    Article  CAS  Google Scholar 

  • Pisella L, Rossetti Y, Michel C, Rode G, Boisson D, Pelisson D, Tilikete C (2005) Ipsidirectional impairment of prism adaptation after unilateral lesion of anterior cerebellum. Neurology 65(1):150–152

    Article  CAS  PubMed  Google Scholar 

  • Pisella L, Rode G, Farné A, Tilikete C, Rossetti Y (2006) Prism adaptation in the rehabilitation of patients with visuo-spatial cognitive disorders. Curr Opinion Neurol 19(6):534–542

    Article  Google Scholar 

  • Redding GM, Wallace B (1988) Components of prism adaptation in terminal and concurrent exposure: organization of the eye-hand coordination loop. Percept Psychophys 44(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Redding GM, Wallace B (2006) Prism adaptation and unilateral neglect: review and analysis. Neuropsychologia 44(1):1–20

    Article  PubMed  Google Scholar 

  • Redding GM, Wallace B (2009) Asymmetric visual prism adaptation and intermanual transfer. J Mot Behav 41(1):83–96

    Article  PubMed  Google Scholar 

  • Redding GM, Rossetti Y, Wallace B (2005) Applications of prism adaptation: a tutorial in theory and method. Neurosci Biobehavioral Rev 29(3):431–444

    Article  Google Scholar 

  • Reed SA, Dassonville P (2014) Adaptation to leftward-shifting prisms enhances local processing in healthy individuals. Neuropsychologia 56:418–427

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossetti Y, Rode G, Pisella L, Farné A, Li L, Boisson D, Perenin MT (1998) Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 395(6698):166–169

    Article  CAS  PubMed  Google Scholar 

  • Sokolov AA, Miall RC, Ivry RB (2017) The Cerebellum: adaptive prediction for movement and cognition. Trends Cognit Sci 21(5):313–332. https://doi.org/10.1016/j.tics.2017.02.005

    Article  Google Scholar 

  • Striemer CL, Danckert J (2010) Through a prism darkly: re-evaluating prisms and neglect. Trends Cognit Sci 14(7):308–316. https://doi.org/10.1016/j.tics.2010.04.001

    Article  Google Scholar 

  • Striemer CL, Enns JT, Whitwell RL (2019a) Visuomotor adaptation in the absence of input from early visual cortex. Cortex 115:201–215. https://doi.org/10.1016/j.cortex.2019.01.022

    Article  PubMed  Google Scholar 

  • Striemer CL, Whitwell RL, Goodale MA (2019b) Affective blindsight in the absence of input from face processing regions in occipital-temporal cortex. Neuropsychologia 128:50–57. https://doi.org/10.1016/j.neuropsychologia.2017.11.014

    Article  PubMed  Google Scholar 

  • van Es DM, van der Zwaag W, Knapen T (2019) Topographic maps of visual space in the human cerebellum. Curr Biol 29(10):1689–1694. https://doi.org/10.1016/j.cub.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  • Von Helmholtz H (1867) Handbuch der physiologischen Optik (Vol. 9): Voss

  • Weiner MJ, Hallett M, Funkenstein HH (1983) Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 33(6):766–772

    Article  CAS  PubMed  Google Scholar 

  • Welch RB, Goldstein G (1972) Prism adaptation and brain damage. Neuropsychologia 10(4):387–394

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Bock O, Gizewski ER, Schoch B, Timmann D (2010) Visuomotor adaptive improvement and aftereffects are impaired differentially following cerebellar lesions in SCA and PICA territory. Exp Brain Res 201(3):429–439. https://doi.org/10.1007/s00221-009-2052-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (2022-03608) awarded to Christopher Striemer. The authors would like to thank Brittany Angus-Cook for her assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Striemer.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Bill J Yates.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1: (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Striemer, C.L., Morrill, A. Direction of visual shift and hand congruency enhance spatial realignment during visuomotor adaptation. Exp Brain Res 241, 2475–2486 (2023). https://doi.org/10.1007/s00221-023-06697-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-023-06697-4

Keywords