[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Automatic adjustments toward unseen visual targets during grasping movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We investigated whether control of hand movements can be driven by visual information that is not consciously perceived. Subjects performed reach-to-grasp movements toward 2D virtual objects that were projected onto a rigid surface. On perturbed trials, the target object was briefly presented at a different orientation (±20° rotation) or different size (±20 % scaling) during movement. The perturbed objects were presented for 33 ms, followed by a 200-ms mask and reappearance of the original target object. Subjects perceived only the mask and were not aware of the preceding perturbed stimuli. Unperturbed trials were identical except that there was no change in the target object before the mask. Despite being unaware of the brief perturbed stimuli, subjects showed corrective adjustments to their movements: rotation of the grip axis in response to orientation perturbations, and scaling of grip aperture in response to size perturbations. Responses were detectable 250–300 ms after the perturbation onset and began to reduce 250–300 ms after the reappearance of the original target. Our results demonstrate that the visuomotor system can utilize visual information for control of grasping even when this information is not available for conscious perception. We suggest that this dissociation is due to different temporal resolution of visual processing mechanisms underlying conscious perception and control of actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bar M, Tootell RB, Schacter DL, Greve DN, Fischl B, Mendola JD, Rosen BR, Dale AM (2001) Cortical mechanisms specific to explicit visual object recognition. Neuron 29(2):529–535

    Article  CAS  PubMed  Google Scholar 

  • Binsted G, Brownell K, Vorontsova Z, Heath M, Saucier D (2007) Visuomotor system uses target features unavailable to conscious awareness. Proc Natl Acad Sci 104(31):12669–12672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock O, Jüngling S (1999) Reprogramming of grip aperture in a double-step virtual grasping paradigm. Exp Brain Res 125(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Bridgeman B, Lewis S, Heit G, Nagle M (1979) Relation between cognitive and motor-oriented systems of visual position perception. J Exp Psychol Hum Percept Perform 5(4):692

    Article  CAS  PubMed  Google Scholar 

  • Castiello U, Bennett KMB, Stelmach GE (1993) Reach to grasp: the natural response to perturbation of object size. Exp Brain Res 94(1):163–178

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Saunders JA (2015) Online processing of shape information for control of grasping. Exp Brain Res 233 (11):3109–3124.

    Article  PubMed  Google Scholar 

  • Cressman EK, Franks IM, Enns JT, Chau R (2007) On-line control of pointing is modified by unseen visual shapes. Conscious Cogn 17:265–275

    Article  Google Scholar 

  • Cressman EK, Lam MY, Franks IM, Enns JT, Chau R (2013) Unconscious and out of control: subliminal priming is insensitive to observer expectations. Conscious Cogn 22:716–728

    Article  PubMed  Google Scholar 

  • Desmurget M, Prablanc C (1997) Postural control of three-dimensional prehension movements. J Neurophysiol 77(1):452–464

    CAS  PubMed  Google Scholar 

  • Dubrowski A, Bock O, Carnahan H, Jüngling S (2002) The coordination of hand transport and grasp formation during single-and double-perturbed human prehension movements. Exp Brain Res 145(3):365–371

    Article  CAS  PubMed  Google Scholar 

  • Eloka O, Franz VH (2011) Effects of object shape on the visual guidance of action. Vis Res 51(8) 925–931

    Article  PubMed  Google Scholar 

  • Fan J, He J, Tillery SIH (2006) Control of hand orientation and arm movement during reach and grasp. Exp Brain Res 171(3):283–296

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner AD, Jakobson L, Carey D (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349(6305):154–156

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4(7):604–610

    Article  CAS  PubMed  Google Scholar 

  • Greenwald HS, Knill DC (2009a) A comparison of visuomotor cue integration strategies for object placement and prehension. Vis Neurosci 26(01):63–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenwald HS, Knill DC (2009b) Cue integration outside central fixation: a study of grasping in depth. J Vis 9(2):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Grill-Spector K, Kushnir T, Hendler T, Malach R (2000) The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci 3(8):837–843

    Article  CAS  PubMed  Google Scholar 

  • Heath M, Maraj A, Godbolt B, Binsted G (2008) Action without awareness: reaching to an object you do not remember seeing. PLoS One 3(10):e3539. doi:10.1371/journal.pone.0003539

    Article  PubMed  PubMed Central  Google Scholar 

  • Hesse C, Franz VH (2009) Corrective processes in grasping after perturbations of object size. J Mot Behav 41(3):253–273

    Article  PubMed  Google Scholar 

  • Kleinholdermann U, Franz VH, Gegenfurtner K R (2013) Human grasp point selection. J Vis 13(8). doi:10.1167/13.8.23

  • Kouider S, Eger E, Dolan R, Henson RN (2009) Activity in face-responsive brain regions is modulated by invisible, attended faces: evidence from masked priming. Cereb Cortex 19(1):13–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig K, Sterzer P, Kathmann N, Franz VH, Hesselmann G (2013) Learning to detect but not to grasp suppressed visual stimuli. Neuropsychologia 51(13):2930–2938

    Article  CAS  PubMed  Google Scholar 

  • Milner AD (2012) Is visual processing in the dorsal stream accessible to consciousness? Proc R Soc B Biol Sci 279(1737):2289–2298. doi:10.1098/rspb.2011.2663

    Article  CAS  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action, vol 27. Oxford University Press, Oxford

    Google Scholar 

  • Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46(3):774–785

    Article  CAS  PubMed  Google Scholar 

  • Noguchi Y, Kakigi R (2005) Neural mechanisms of visual backward masking revealed by high temporal resolution imaging of human brain. Neuroimage 27(1):178–187

    Article  PubMed  Google Scholar 

  • Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1991) Selective perturbation of visual input during prehension movements: II. The effects of changing object size. Exp Brain Res 83(3):502–512

    Article  CAS  PubMed  Google Scholar 

  • Pélisson D, Prablanc C, Goodale MA, Jeannerod M (1986) Visual control of reaching movements without vision of the limb. Exp Brain Res 62(2):303–311. doi:10.1007/bf00238849

    Article  PubMed  Google Scholar 

  • Prablanc C, Martin O (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol 67(2):455–469

    CAS  PubMed  Google Scholar 

  • Roseboom W, Arnold DH (2011) Learning to reach for ‘invisible’ visual input. Curr Biol 21(13):R493–R494

    Article  CAS  PubMed  Google Scholar 

  • van Mierlo CM, Louw S, Smeets JB, Brenner E (2009) Slant cues are processed with different latencies for the online control of movement. J Vis 9(3):25

    Article  PubMed  Google Scholar 

  • Voudouris D, Smeets JBJ, Brenner E (2013) Ultra-fast selection of grasping points. J Neurophysiol 110(7):1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Westwood DA, Danckert J, Servos P, Goodale MA (2002) Grasping two-dimensional images and three-dimensional objects in visual-form agnosia. Exp Brain Res 144(2):262–267

    Article  PubMed  Google Scholar 

  • Yuval-Greenberg S, Heeger DJ (2013) Continuous flash suppression modulates cortical activity in early visual cortex. J Neurosci 33(23):9635–9643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Hong Kong Research Grants Council, GRF HKU-753211H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Saunders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Saunders, J.A. Automatic adjustments toward unseen visual targets during grasping movements. Exp Brain Res 234, 2091–2103 (2016). https://doi.org/10.1007/s00221-016-4613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4613-9

Keywords

Navigation