[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

All well-posed problems have uniformly stable and convergent discretizations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper considers a large class of linear operator equations, including linear boundary value problems for partial differential equations, and treats them as linear recovery problems for functions from their data. Well-posedness of the problem means that this recovery is continuous. Discretization recovers restricted trial functions from restricted test data, and it is well-posed or stable, if this restricted recovery is continuous. After defining a general framework for these notions, this paper proves that all well-posed linear problems have stable and refinable computational discretizations with a stability that is determined by the well-posedness of the problem and independent of the computational discretization, provided that sufficiently many test data are used. The solutions of discretized problems converge when enlarging the trial spaces, and the convergence rate is determined by how well the data of the function solving the analytic problem can be approximated by the data of the trial functions. This allows new and very simple proofs of convergence rates for generalized finite elements, symmetric and unsymmetric Kansa-type collocation, and other meshfree methods like Meshless Local Petrov–Galerkin techniques. It is also shown that for a fixed trial space, weak formulations have a slightly better convergence rate than strong formulations, but at the expense of numerical integration. Since convergence rates are reduced to those coming from Approximation Theory, and since trial spaces are arbitrary, this also covers various spectral and pseudospectral methods. All of this is illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdelaziz, Y., Hamouine, A.: A survey of the extended finite element. Comput. Struct. 86, 1141–1151 (2008)

    Article  Google Scholar 

  2. Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The Theory of Splines and Their Applications, Mathematics in Science and Engineering, vol. 38. Academic Press, New York (1967)

  3. Armentano, M.G.: Error estimates in Sobolev spaces for moving least square approximations. SIAM J. Numer. Anal. 39(1), 38–51 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Armentano, M.G., Durán, R.G.: Error estimates for moving least square approximations. Appl. Numer. Math. 37, 397–416 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atluri, S.N.: The Meshless Method (MLPG) for Domain and BIE Discretizations. Tech Science Press, Encino, CA (2005)

    Google Scholar 

  6. Atluri, S.N., Zhu, T.-L.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Babuška, I., Banerjee, U., Osborn, J.E.: Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12, 1–125 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Belytschko, T., Gracie, R., Ventura, G.: A Review of Extended/Generalized Finite Element Methods for Material Modeling. Modelling and Simulation in Materials Science and Engineering, vol. 17 (2009)

  9. Belytschko, T., Guo, Y., Liu, W.K., Xiao, S.P.: A unified stability analysis of meshless particle methods. Int. J. Numer. Methods Eng. 48, 1359–1400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Belytschko, T., Krongauz, Y., Organ, D.J., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. Spec. Issue 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  11. Böhmer, K., Schaback, R.: A nonlinear discretization theory. J. Comput. Appl. Math. 254, 204–219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Braess, D.: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)

  13. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Scientific Computation. Springer, Berlin (2007)

    Google Scholar 

  14. Cheng, A.H.-D., Golberg, M.A., Kansa, E.J., Zammito, G.: Exponential convergence and h-c multiquadric collocation method for partial differential equations. Numer. Methods Partial Differ. Equ. 19, 571–594 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen, A., Davenport, M.A., Leviatan, D.: On the stability and accuracy of least squares approximations. Found. Comput. Math. 13(5), 819–834 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Davydov, O., Schaback, R.: Error bounds for kernel-based numerical differentiation (2013, in revision)

  17. de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 582–606 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. De Marchi, St., Schaback, R.: Stability of kernel-based interpolation. Adv. Comput. Math. 32, 155–161 (2010)

  19. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge Monographs on Applied and Computational Mathematics, vol. 1. Cambridge University Press, Cambridge (1996)

  20. Fornberg, B., Sloan, D.M.: A review of pseudospectral methods for solving partial differential equations. Acta Numer. 3, 203–267 (1994)

  21. Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations I–V, Lecture Notes in Computational Science and Engineering, vols. 26, 43, 57, 65, 79. Springer, Berlin (2002–2011)

  22. Han, W.M., Meng, X.P.: Error analysis of the reproducing kernel particle method. Comput. Methods Appl. Mech. Eng. 190, 6157–6181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. Appl. Math. Comput. 119, 177–186 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hon, Y.C., Schaback, R., Zhou, X.: An adaptive greedy algorithm for solving large RBF collocation problems. Numer. Algorithms 32(1), 13–25 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu, W., Hu, H.Y., Chen, J.S.: Error analysis of collocation method based on reproducing kernel approximation. Numer. Methods Partial Differ. Equ. 27, 554–580 (2011). doi:10.1002/num.20539

  26. Jetter, K., Stöckler, J., Ward, J.D.: Error estimates for scattered data interpolation on spheres. Math. Comput. 68, 733–747 (1999)

    Article  MATH  Google Scholar 

  27. Jost, J.: Partial Differential Equations. Graduate Texts in Mathematics, vol. 214. Springer, New York (2002)

  28. Kansa, E.J.: Application of Hardy’s multiquadric interpolation to hydrodynamics. In: Proc. 1986 Simul. Conf., vol. 4, pp. 111–117 (1986)

  29. Levin, D.: The approximation power of moving least-squares. Math. Comput. 67, 1517–1531 (1998)

    Article  MATH  Google Scholar 

  30. Li, H., Mulay, S.S.: Meshless Methods and Their Numerical Properties. CRC Press, Boca Raton (2013)

    Book  MATH  Google Scholar 

  31. Li, S.F., Liu, W.K.: Meshfree Particle Methods. Springer, Berlin (2004)

    MATH  Google Scholar 

  32. Li, Z.-C., Lu, T.-T., Hu, H.-Y., Cheng, A.H.-D.: Trefftz and Collocation Methods. WIT Press, Southampton (2008)

    MATH  Google Scholar 

  33. Ling, L., Schaback, R.: On adaptive unsymmetric meshless collocation. In: Atluri, S.N., Tadeu, A.J.B. (eds.) Proceedings of the 2004 International Conference on Computational and Experimental Engineering and Sciences, Advances in Computational and Experimental Engineering and Sciences. Tech Science Press, paper # 270 (2004)

  34. Liu, G.R.: Meshfree Methods, 2nd edn. CRC Press, Boca Raton (2010)

    Google Scholar 

  35. Melenk, J.M.: On approximation in meshless methods. In: Frontiers of Numerical Analysis, Universitext, pp. 65–141. Springer, Berlin (2005)

  36. Mirzaei, D.: Private communication (2014)

  37. Mirzaei, D., Schaback, R.: Direct Meshless Local Petrov–Galerkin (DMLPG) method: a generalized MLS approximation. Appl. Numer. Math. 68, 73–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79, 763–813 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rieger, C., Zwicknagl, B., Schaback, R.: Sampling and stability. In: Dæhlen, M., Floater, M.S., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces, Lecture Notes in Computer Science, vol. 5862, pp. 347–369 (2010)

  40. Šarler, B.: From global to local radial basis function collocation method for transport phenomena. In: Advances in Meshfree Techniques, Comput. Methods Appl. Sci., vol. 5, pp. 257–282. Springer, Dordrecht (2007)

  41. Schaback, R.: Improved error bounds for scattered data interpolation by radial basis functions. Math. Comput. 68, 201–216 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schaback, R.: Convergence of unsymmetric kernel-based meshless collocation methods. SIAM J. Numer. Anal. 45(1), 333–351 (2007, electronic)

  43. Schaback, R.: Unsymmetric meshless methods for operator equations. Numer. Math. 114, 629–651 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schaback, R.: A computational tool for comparing all linear PDE solvers. Adv. Comput. Math. 41, 333–355 (2015)

    Article  MathSciNet  Google Scholar 

  45. Schaback, R.: Direct discretizations with applications to meshless methods for PDEs. Dolomites Research Notes on Approximation, Proceedings of DWCAA12, vol. 6, pp. 37–51 (2013)

  46. Schaback, R.: Greedy sparse linear approximations of functionals from nodal data. Numer. Algorithms 67, 531–547 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Schweitzer, M.A.: Meshfree and Generalized Finite Element Methods. Institute for Numerical Simulation, University of Bonn, Habilitation (2008)

    Google Scholar 

  49. Shen, Q.: Local RBF-based differential quadrature collocation method for the boundary layer problems. Eng. Anal. Bound. Elem. 34(3), 213–228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Shu, C., Ding, H., Yeo, K.S.: Computation of incompressible Navier–Stokes equations by local RBF-based differential quadrature method. CMES Comput. Model. Eng. Sci. 7(2), 195–205 (2005)

    MathSciNet  MATH  Google Scholar 

  51. Sladek, J., Sladek, V.: Advances in Meshless Methods. Tech Science Press (2006)

  52. Stevens, D., Power, H., Lees, M., Morvan, H.: The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems. J. Comput. Phys. 228(12), 4606–4624 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Swartz, B.: Conditioning collocation. SIAM J. Numer. Anal. 25(1), 124–147 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  54. Swartz, B., Wendroff, B.: The relation between the Galerkin and collocation methods using smooth splines. SIAM J. Numer. Anal. 11, 994–996 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wendland, H.: Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal. 21, 285–300 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  57. Yao, G.M., ul Islam, S., Šarler, B.: Assessment of global and local meshless methods based on collocation with radial basis functions for parabolic partial differential equations in three dimensions. Eng. Anal. Bound. Elem. 36(11), 1640–1648 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schaback.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaback, R. All well-posed problems have uniformly stable and convergent discretizations. Numer. Math. 132, 597–630 (2016). https://doi.org/10.1007/s00211-015-0731-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0731-8

Mathematics Subject Classification