[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A construction of several classes of two-weight and three-weight linear codes

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Linear codes constructed from defining sets have been extensively studied and may have a few nonzero weights if the defining sets are well chosen. Let \({\mathbb {F}}_q\) be a finite field with \(q=p^m\) elements, where p is a prime and m is a positive integer. Motivated by Ding and Ding’s recent work (IEEE Trans Inf Theory 61(11):5835–5842, 2015), we construct p-ary linear codes \({\mathcal {C}}_D\) by

$$\begin{aligned} {\mathcal {C}}_D=\{{\mathbf {c}}(a,b)=\big (\text {Tr}_m(ax+by)\big )_{(x,y)\in D}: a, b \in {\mathbb {F}}_q\}, \end{aligned}$$

where \(D \subset {\mathbb {F}}_q^2\) and \(\text {Tr}_m\) is the trace function from \({\mathbb {F}}_q\) onto \({\mathbb {F}}_p\). In this paper, we will employ exponential sums to investigate the weight enumerators of the linear codes \({\mathcal {C}}_D\), where \(D=\{(x, y) \in {\mathbb {F}}_q^2 \setminus \{(0,0)\}: \text {Tr}_m(x^{N_1}+y^{N_2})=0\}\) for two positive integers \(N_1\) and \(N_2\). Several classes of two-weight and three-weight linear codes and their explicit weight enumerators are presented if \(N_1, N_2 \in \{1, 2, p^{\frac{m}{2}}+1\}\). By deleting some coordinates, more punctured two-weight and three-weight linear codes \({\mathcal {C}}_{\overline{D}}\) which include some optimal codes are derived from \({\mathcal {C}}_D\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Berndt, B., Evans, R., Williams, K.: Gauss and Jacobi Sums. Wiley, New York (1997)

    MATH  Google Scholar 

  2. Calderbank, A.R., Goethals, J.M.: Three-weight codes and association schemes. Philips J. Res. 39, 143–152 (1984)

    MATH  MathSciNet  Google Scholar 

  3. Calderbank, A.R., Kantor, W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coulter, R.S.: Further evaluation of some Weil sums. Acta Arith. 86, 217–226 (1998)

    MATH  MathSciNet  Google Scholar 

  6. Ding, C.: A class of three-weight and four-weight codes. In: Xing, C., et al. (eds.) Proceedings of the Second International Workshop on Coding Theory and Cryptography, Lecture Notes in Computer Science, vol. 5557, pp. 34–42. Springer Verlag (2009)

  7. Ding, C.: Codes from Difference Sets. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  8. Ding, C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ding, C., Li, C., Li, N., Zhou, Z.: Three-weight cyclic codes and their weight distributions. Discret. Math. 339, 415–427 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ding, C., Liu, Y., Ma, C., Zeng, L.: The weight distributions of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory 57(12), 8000–8006 (2011)

    Article  MathSciNet  Google Scholar 

  11. Ding, C., Luo, J., Niederreiter, H.: Two-weight codes punctured from irreducible cyclic codes. In: Li, Y., et al. (eds.) Proceedings of the First Worshop on Coding and Cryptography, pp. 119–124. World Scientific, Singapore (2008)

    Google Scholar 

  12. Ding, C., Niederreiter, H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53(6), 2274–2277 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ding, C., Yang, J.: Hamming weights in irreducible cyclic codes. Discret. Math. 313, 434–446 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ding, K., Ding, C.: Binary linear codes with three weights. IEEE Comm. Lett. 18(11), 1879–1882 (2014)

    Article  MATH  Google Scholar 

  15. Ding, K., Ding, C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61(11), 5835–5842 (2015)

    Article  MathSciNet  Google Scholar 

  16. Feng, K., Luo, J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14, 390–409 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de. Accessed on 03-04-2016

  18. Heng, Z., Yue, Q.: A class of binary linear codes with at most three weights. IEEE Comm. Lett. 19(9), 1488–1491 (2015)

    Article  Google Scholar 

  19. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Springer-Verlag, Berlin (1990). GTM 84

    Book  MATH  Google Scholar 

  20. Li, C., Yue, Q., Fu, F.W.: Complete weight enumerators of some cyclic codes. Des. Codes Cryptogr. 80, 295–315 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, C., Yue, Q., Li, F.: Hamming weights of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory 60(7), 3895–3902 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley Publishing Inc., Boston (1983)

    MATH  Google Scholar 

  23. Luo, J., Feng, K.: On the weight distribution of two classes of cyclic codes. IEEE Trans. Inf. Theory 54(12), 5332–5344 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Luo, J., Feng, K.: Cyclic codes and sequences from generalized Coulter-Matthews function. IEEE Trans. Inf. Theory 54(12), 5345–5353 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ma, C., Zeng, L., Liu, Y., Feng, D., Ding, C.: The weight enumerator of a class of cyclic codes. IEEE Trans. Inf. Theory 57(1), 397–402 (2011)

    Article  MathSciNet  Google Scholar 

  26. Tang, C., Li, N., Qi, Y., Zhou, Z., Helleseth, T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–1176 (2016)

    Article  MathSciNet  Google Scholar 

  27. Vega, G.: The weight distribution of an extended class of reducible cyclic codes. IEEE Trans. Inf. Theory 58(7), 4862–4869 (2012)

    Article  MathSciNet  Google Scholar 

  28. Wang, B., Tang, C., Qi, Y., Yang, Y., Xu, M.: The weight distributions of cyclic codes and elliptic curves. IEEE Trans. Inf. Theory 58(12), 7253–7259 (2012)

    Article  MathSciNet  Google Scholar 

  29. Wang, Q., Ding, K., Xue, R.: Binary linear codes with two weights. IEEE Comm. Lett. 19(7), 1097–1100 (2015)

    Article  Google Scholar 

  30. Xiong, M.: The weight distributions of a class of cyclic codes. Finite Fields Appl. 18, 933–945 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yang, J., Xia, L.: Complete solving of the explicit evaluation of Gauss sums in the index 2 case. Sci. China Math. 53(9), 2525–2542 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yang, J., Xiong, M., Ding, C., Luo, J.: Weight distribution of a class of cyclic codes with arbitrary number of zeros. IEEE Trans. Inf. Theory 59(9), 5985–5993 (2013)

    Article  MathSciNet  Google Scholar 

  33. Yuan, J., Ding, C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zeng, X., Hu, L., Jiang, W., Yue, Q., Cao, X.: The weight distribution of a class of p-ary cyclic codes. Finite Fields Appl. 16, 56–73 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhou, Z., Ding, C.: Seven classes of three-weight cyclic codes. IEEE Trans. Comm. 61(10), 4120–4126 (2013)

    Article  Google Scholar 

  36. Zhou, Z., Ding, C.: A class of three-weight cyclic codes. Finite Fields Appl. 25, 79–93 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zhou, Z., Li, N., Fan, C., Helleseth, T.: Linear codes with two or three weights from quadratic Bent functions. Des. Codes Cryptogr. (2015). doi:10.1007/s10623-015-0144-9

Download references

Acknowledgments

The authors are very grateful to the editor and the anonymous reviewers for their valuable comments and suggestions that improved the quality of this paper. The paper is supported by the National Natural Science Foundation of China (Nos. 11171150, 61571243, and 61171082), the Fundamental Research Funds for the Central Universities (No. 56XZA15002), and the 973 Program of China (Grant No. 2013CB834204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengju Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yue, Q. & Fu, FW. A construction of several classes of two-weight and three-weight linear codes. AAECC 28, 11–30 (2017). https://doi.org/10.1007/s00200-016-0297-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-016-0297-4

Keywords

Mathematics Subject Classification

Navigation