[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Chaotic dynamics in the seasonally forced SIR epidemic model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We prove analytically the existence of chaotic dynamics in the forced SIR model. Although numerical experiments have already suggested that this model can exhibit chaotic dynamics, a rigorous proof (without computer-aided) was not given before. Under seasonality in the transmission rate, the coexistence of low birth and mortality rates with high recovery and transmission rates produces infinitely many periodic and aperiodic patterns together with sensitive dependence on the initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Augeraud-Verón E, Sari N (2014) Seasonal dynamics in an SIR epidemic system. J Math Biol 68:701–725

    Article  MathSciNet  MATH  Google Scholar 

  • Aulbach B, Kieninger B (2001) On three definitions of chaos. Nonlinear Dyn Syst Theory 1:23–37

    MathSciNet  MATH  Google Scholar 

  • Axelsen JB, Yaari R, Grenfell BT, Stone L (2014) Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers. Proc Natl Acad Sci 111:9538–9542

    Article  Google Scholar 

  • Chow SN, Wang D (1986) On the monotonicity of the period function of some second order equations. Casopis pro pestovani matematiky 111:14–25

    MathSciNet  MATH  Google Scholar 

  • Diedrichs DR, Isihara PA, Buursma DD (2014) The schedule effect: can recurrent peak infections be reduced without vaccines, quarantines or school closings? Math Biosci 248:46–53

    Article  MathSciNet  MATH  Google Scholar 

  • Dietz K (1976) The incidence of infectious diseases under the influence of seasonal fluctuations. In: Mathematical models in medicine. Springer, Berlin, pp 1–15

  • Earn DJ, Rohani P, Bolker BM, Grenfell BT (2000) A simple model for complex dynamical transitions in epidemics. Science 287:667–670

    Article  Google Scholar 

  • Germann TC, Kadau K, Longini IM, Macken CA (2006) Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci 103:5935–5940

    Article  Google Scholar 

  • Glendinning P, Perry LP (1997) Melnikov analysis of chaos in a simple epidemiological model. J Math Biol 35:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Keeling MJ, Grenfell BT (1997) Disease extinction and community size: modeling the persistence of measles. Science 275:65–67

    Article  Google Scholar 

  • Keeling MJ, Rohani P, Grenfell BT (2001) Seasonally forced disease dynamics explored as switching between attractors. Phys D 148:317–335

    Article  MATH  Google Scholar 

  • Korobeinikov A, Maini PK (2004) A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math Biosci Eng 1:57–60

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov YA, Piccardi C (1994) Bifurcation analysis of periodic SEIR and SIR epidemic models. J Math Biol 32:109–120

    Article  MathSciNet  MATH  Google Scholar 

  • Liz E, Ruiz-Herrera A (2015) Delayed population models with Allee effects and exploitation. Math Biosci Eng 12:83–97

    Article  MathSciNet  MATH  Google Scholar 

  • London WP, Yorke JA (1973) Recurrent outbreaks of measles, chickenpox and mumps I. Seasonal variation in contact rates. Am J Epidemiol 98:453–468

    Article  Google Scholar 

  • Margheri A, Rebelo C, Zanolin F (2010) Chaos in periodically perturbed planar Hamiltonian systems using linked twist maps. J Differ Equ 249:3233–3257

    Article  MathSciNet  MATH  Google Scholar 

  • Margheri A, Rebelo C, Zanolin F (2013) Complex dynamics in Pendulum-type equations with variable length. J Dyn Differ Equ 25:627–652

    Article  MathSciNet  MATH  Google Scholar 

  • May RM, Conway GR, Hassell MP, Southwood TRE (1974) Time delays, density-dependence and single-species oscillations. J Anim Ecol 43:747–770

    Article  Google Scholar 

  • McCluskey CC (2010) Complete global stability for an SIR epidemic model with delay distributed or discrete. Nonlinear Anal Real World Appl 11:55–59

    Article  MathSciNet  MATH  Google Scholar 

  • Medio A, Pireddu M, Zanolin F (2009) Chaotic dynamics for maps in one and two dimensions: a geometrical method and applications to economics. Int J Bifurc Chaos 19:3283–3309

    Article  MathSciNet  MATH  Google Scholar 

  • O’Regan SM, Kelly TC, Korobeinikov A, Callaghan MJ, Pokrovskii AV, Rachinskii D (2013) Chaos in a seasonally perturbed SIR model: avian influenza in a seabird colony as a paradigm. J Math Biol 67:293–327

    Article  MathSciNet  MATH  Google Scholar 

  • Olinky R, Huppert A, Stone L (2008) Seasonal dynamics and thresholds governing recurrent epidemics. J Math Biol 56:87–839

    Article  MathSciNet  MATH  Google Scholar 

  • Rebelo C, Margheri A, Bacaer N (2012) Persistence in seasonally forced epidemiological models. J Math Biol 64:933–949

    Article  MathSciNet  MATH  Google Scholar 

  • Ruiz-Herrera A, Zanolin F (2014) An example of chaotic dynamics in 3D systems via stretching along paths. Ann Mat 193:163–185

    Article  MathSciNet  MATH  Google Scholar 

  • Schenzle D (1984) An age-structured model of pre-and post-vaccination measles transmission. Math Med Biol 1:169–191

    Article  MathSciNet  MATH  Google Scholar 

  • Schwartz IB (1985) Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models. J Math Biol 21:347–361

    Article  MathSciNet  MATH  Google Scholar 

  • Smith HL (1983) Subharmonic bifurcation in an SIR epidemic model. J Math Biol 17:163–177

    Article  MathSciNet  MATH  Google Scholar 

  • Stone L, Olinky R, Huppert A (2007) Seasonal dynamics of recurrent epidemics. Nature 446:533–536

    Article  MATH  Google Scholar 

  • Thompson KM (2016) Evolution and use of dynamic transmission models for measles and rubella risk and policy analysis. Risk Anal 36:1383–1403

    Article  Google Scholar 

  • Uziel A, Stone L (2012) Determinants of periodicity in seasonally driven epidemics. J Theor Biol 305:88–95

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were supported by the grant MTM2014–56953-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Ruiz-Herrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrientos, P.G., Rodríguez, J.Á. & Ruiz-Herrera, A. Chaotic dynamics in the seasonally forced SIR epidemic model. J. Math. Biol. 75, 1655–1668 (2017). https://doi.org/10.1007/s00285-017-1130-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1130-9

Keywords

Mathematics Subject Classification

Navigation