Abstract
Although internationally recognized as the “highest priority critically important antimicrobials,” fluoroquinolones are extensively used in both human and veterinary medicine. Poor metabolism and recalcitrance of fluoroquinolones have led to their worldwide presence in municipal wastewaters as well as in manure and, consequently, in several environmental compartments. Being one of the most widely used fluoroquinolones in human medicine and, aside from that, the main metabolite of the veterinary drug enrofloxacin, ciprofloxacin is the most frequently detected fluoroquinolone in effluents of European wastewater treatment plants. Due to serious global concerns about the increasing emergence of bacterial (multi)resistances toward the highly efficient fluoroquinolones, special attention has been paid to their environmental degradation by various microorganisms. This review summarizes research on microbial transformation and degradation of fluoroquinolones with special emphasis on ciprofloxacin, presents an overview of the main ciprofloxacin biotransformation products, and takes a closer look at their biological relevance. Furthermore, own data, experiences, and publications gathered from our recent research in the field are acknowledged.
Similar content being viewed by others
References
Accinelli C, Saccà ML, Batisson I, Fick J, Mencarelli M, Grabic R (2010) Removal of oseltamivir (Tamiflu) and other selected pharmaceuticals from wastewater using a granular bioplastic formulation entrapping propagules of Phanerochaete chrysosporium. Chemosphere 81:436–443. https://doi.org/10.1016/j.chemosphere.2010.06.074
Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2006) Transformation of the antibacterial agent norfloxacin by environmental mycobacteria. Appl Environ Microbiol 72:5790–5793. https://doi.org/10.1128/AEM.03032-05
Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2007) Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria. Can J Microbiol 53:144–147. https://doi.org/10.1139/w06-101
Al-Ahmad A, Daschner FD, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37:158–163. https://doi.org/10.1007/s002449900501
Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57:505–512. https://doi.org/10.1016/j.chemosphere.2004.06.024
Amorim CL, Moreira IS, Maia AS, Tiritan ME, Castro PML (2014) Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11. Appl Microbiol Biotechnol 98:3181–3190. https://doi.org/10.1007/s00253-013-5333-8
Anadón A, Martínez-Larrañaga MR, Iturbe J, Martínez MA, Díaz MJ, Frejo MT, Martínez M (2001) Pharmacokinetics and residues of ciprofloxacin and its metabolites in broiler chickens. Res Vet Sci 71:101–109. https://doi.org/10.1053/rvsc.2001.0494
Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16. https://doi.org/10.1093/jac/48.suppl_1.5
Andriamalala A, Vieublé-Gonod L, Dumeny V, Cambier P (2018) Fate of sulfamethoxazole, its main metabolite N-ac-sulfamethoxazole and ciprofloxacin in agricultural soils amended or not by organic waste products. Chemosphere 191:607–615. https://doi.org/10.1016/j.chemosphere.2017.10.093
Backhaus T, Scholze M, Grimme LH (2000) The single substance and mixture toxicity of quinolones to bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49:49–61. https://doi.org/10.1016/S0166-445X(99)00069-7
Bártíková H, Podlipná R, Skálová L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301. https://doi.org/10.1016/j.chemosphere.2015.10.137
Becker D, Varela della Giustina S, Rodriguez-Mozaz S, Schoevaart R, Barceló D, de Cazes M, Belleville M-P, Sanchez-Marcano J, de Gunzburg J, Couillerot O, Völker J, Oehlmann J, Wagner M (2016) Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase—degradation of compounds does not always eliminate toxicity. Bioresour Technol 219:500–509. https://doi.org/10.1016/j.biortech.2016.08.004
Berendsen BJA, Lahr J, Nibbeling C, Jansen LJM, Bongers IEA, Wipfler EL, van de Schans MGM (2018) The persistence of a broad range of antibiotics during calve, pig and broiler manure storage. Chemosphere 204:267–276. https://doi.org/10.1016/j.chemosphere.2018.04.042
Blánquez A, Guillén F, Rodríguez J, Arias ME, Hernández M (2016) The degradation of two fluoroquinolone based antimicrobials by SilA, an alkaline laccase from Streptomyces ipomoeae. World J Microbiol Biotechnol 32:52. https://doi.org/10.1007/s11274-016-2032-5
Borner K, Lode H (1986) Biotransformation von ausgewählten Gyrasehemmern. Infection 14:S54–S59
Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soil into plants. J Agric Food Chem 54:2288–2297. https://doi.org/10.1021/jf053041t
Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens MJ, Suetens C, Monnet DL, Burden of AMR Collaborative Group (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 19:56–66. https://doi.org/10.1016/S1473-3099(18)30605-4
Chakraborty P, Abraham J (2017) Comparative study on degradation of norfloxacin and ciprofloxacin by Ganoderma lucidum JAPC1. Korean J Chem Eng 34:1122–1128. https://doi.org/10.1007/s11814-016-0345-6
Chen Y, Rosazza JPN, Reese CP, Chang H-Y, Nowakowski MA, Kiplinger JP (1997) Microbial models of soil metabolism: biotransformations of danofloxacin. J Ind Microbiol Biotechnol 19:378–384. https://doi.org/10.1038/sj.jim.2900409
Chowdhury F, Langenkämper G, Grote M (2016) Studies on uptake and distribution of antibiotics in red cabbage. J Verbr Lebensm 11:61–69. https://doi.org/10.1007/s00003-015-1008-y
Chung HS, Lee Y-J, Rahman MM, Abd El-Aty AM, Lee HS, Kabir MH, Kim SW, Park B-J, Kim J-E, Hacimüftüoğlu F, Nahar N, Shin H-C, Shim J-H (2017) Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish. Sci Total Environ 605-606:322–331. https://doi.org/10.1016/j.scitotenv.2017.06.231
Cruz-Morató C, Rodríguez-Rodríguez CE, Marco-Urrea E, Sarrà M, Caminal G, Vicent T, Jelić A, García-Galán MJ, Pérez S, Díaz-Cruz MS, Petrović M, Barceló D (2012) Biodegradation of pharmaceuticals by fungi and metabolites identification. In: Vicent T, Caminal G, Eljarrat E, Barceló D (eds) Emerging organic contaminants in sludges. Springer, Berlin, pp 165–213
Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D, Marco-Urrea E, Vicent T, Sarrà M (2013) Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res 47:5200–5210. https://doi.org/10.1016/j.watres.2013.06.007
Cruz-Morató C, Lucas D, Llorca M, Rodriguez-Mozaz S, Gorga M, Petrovic M, Barceló D, Vicent T, Sarrà M, Marco-Urrea E (2014) Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci Total Environ 493:365–376. https://doi.org/10.1016/j.scitotenv.2014.05.117
Čvančarová M, Moeder M, Filipová A, Reemtsma T, Cajthaml T (2013) Biotransformation of the antibiotic agent flumequine by ligninolytic fungi and residual antibacterial activity of the transformation mixtures. Environ Sci Technol 47:14128–14136. https://doi.org/10.1021/es403470s
Čvančarová M, Moeder M, Filipová A, Cajthaml T (2015) Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi—metabolites, enzymes and residual antibacterial activity. Chemosphere 136:311–320. https://doi.org/10.1016/j.chemosphere.2014.12.012
Dalla Bona M, Di Leva V, De Liguoro M (2014) The sensitivity of Daphnia magna and Daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures. Chemosphere 115:67–74. https://doi.org/10.1016/j.chemosphere.2014.02.003
Domagala JM (1994) Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother 33:685–706
Drusano G, Labro M-T, Cars O, Mendes P, Shah P, Sörgel F, Weber W (1998) Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin Microbiol Infec 4:2S27–2S41. https://doi.org/10.1111/j.1469-0691.1998.tb00692.x
Ebert I, Bachmann J, Kühnen U, Küster A, Kussatz C, Maletzki D, Schlüter C (2011) Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ Toxicol Chem 30:2786–2792. https://doi.org/10.1002/etc.678
ECDC (2018) Antimicrobial consumption—annual epidemiological report for 2017. http://ecdc.europa.eu/sites/portal/files/documents/AER_for_2017-antimicrobial-consumption.pdf. Accessed 8 July 2019
EFSA (2019) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J 17:5598. https://doi.org/10.2903/j.efsa.2019.5598
Eggen T, Asp TN, Grave K, Hormazabal V (2011) Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere 85:26–33. https://doi.org/10.1016/j.chemosphere.2011.06.041
Feng N-X, Yu J, Xiang L, Yu L-Y, Zhao H-M, Mo C-H, Li Y-W, Cai Q-Y, Wong M-H, Li QX (2019) Co-metabolic degradation of the antibiotic ciprofloxacin by the enriched bacterial consortium XG and its bacterial community composition. Sci Total Environ 665:41–51. https://doi.org/10.1016/j.scitotenv.2019.01.322
Ferrando-Climent L, Cruz-Morató C, Marco-Urrea E, Vicent T, Sarrà M, Rodriguez-Mozaz S, Barceló D (2015) Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater. Chemosphere 136:9–19. https://doi.org/10.1016/j.chemosphere.2015.03.051
Gao N, Liu C-X, Xu Q-M, Cheng J-S, Yuan Y-J (2018) Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus. Chemosphere 195:146–155. https://doi.org/10.1016/j.chemosphere.2017.12.062
Girardi C, Greve J, Lamshöft M, Fetzer I, Miltner A, Schäffer A, Kästner M (2011) Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J Hazard Mater 198:22–30. https://doi.org/10.1016/j.jhazmat/2011.10.004
Golet EM, Xifra I, Siegrist H, Alder AC, Giger W (2003) Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ Sci Technol 37:3243–3249. https://doi.org/10.1021/es0264448
Gomes MP, Gonçalves CA, de Brito JCM, Souza AM, da Silva Cruz FV, Bicalho EM, Figueredo CC, Garcia QS (2017) Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): implications for energy metabolism and antibiotic-uptake ability. J Hazard Mater 328:140–149. https://doi.org/10.1016/j.jhazmat.2017.01.005
Granneman GR, Snyder KM, Shu VS (1986) Difloxacin metabolism and pharmacokinetics in humans after single oral doses. Antimicrob Agents Chemother 30:689–693. https://doi.org/10.1128/aac.30.5.689
Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39. https://doi.org/10.1016/j.microc.2017.02.006
Gros M, Cruz-Morato C, Marco-Urrea E, Longrée P, Singer H, Sarrà M, Hollender J, Vicent T, Rodriguez-Mozaz S, Barceló D (2014) Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Res 60:228–241. https://doi.org/10.1016/j.watres.2014.04.042
Grote M, Meriç DH, Langenkämper G, Hayen H, Betsche T, Freitag M (2009) Untersuchungen zum Transfer pharmakologisch wirksamer Substanzen aus der Nutztierhaltung in Poree und Weißkohl. J Verbr Lebensm 4:287–304. https://doi.org/10.1007/s00003-009-0316-5
Gulde R, Meier U, Schymanski EL, Kohler HP, Helbling DE, Derrer S, Rentsch D, Fenner K (2016) Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge. Environ Sci Technol 50:2908–2920. https://doi.org/10.1021/acs.est.5b05186
Halling-Sørensen B, Holten Lützhøft HC, Andersen HR, Ingerslev F (2000) Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. J Antimicrob Chemother 46:53–58. https://doi.org/10.1093/jac/46.suppl_1.53
Hamscher G, Mohring SAI (2012) Tierarzneimittel in Böden und in der aquatischen Umwelt. Chem Ing Tech 84:1052–1061. https://doi.org/10.1002/cite.201100255
Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192. https://doi.org/10.1038/nrmicro2519
Hooper DC (1999) Mode of action of fluoroquinolones. Drugs 58:6–10. https://doi.org/10.2165/00003495-199958002-00002
Hüttel W, Hoffmeister D (2010) Fungal biotransformations in pharmaceutical sciences. In: Hofrichter M (ed) The mycota X: industrial applications, 2nd edn. Springer, Berlin, pp 293–317
Jia A, Wan Y, Xiao Y, Hu J (2012) Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Res 46:387–394. https://doi.org/10.1016/j.watres.2011.10.055
Jia Y, Khanal SK, Shu H, Zhang H, Chen G-H, Lu H (2018) Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: mechanism and pathways. Water Res 136:64–74. https://doi.org/10.1016/j.watres.2018.02.057
Jung CM, Heinze TM, Strakosha R, Elkins CA, Sutherland JB (2009) Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. J Appl Microbiol 106:564–571. https://doi.org/10.1111/j.1365-2672.2008.04026.x
Karl W, Schneider J, Wetzstein H-G (2006) Outlines of an “exploding” network of metabolites generated from the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum. Appl Microbiol Biotechnol 71:101–113. https://doi.org/10.1007/s00253-005-0177-5
Kees F, Raasch W, Grobecker H (1992) Strukturelle Charakterisierung eines unbekannten Metaboliten von Ciprofloxacin. Arzneimittel-Forsch Drug Res 42:570–575
Kim D-W, Heinze TM, Kim B-S, Schnackenberg LK, Woodling KA, Sutherland JB (2011) Modification of norfloxacin by Microbacterium sp. strain isolated from a wastewater treatment plant. Appl Environ Microbiol 77:6100–6108. https://doi.org/10.1128/AEM.00545-11
Kim D-W, Feng J, Chen H, Kweon O, Gao Y, Yu L-R, Burrowes VJ, Sutherland JB (2013) Identification of the enzyme responsible for N-acetylation of norfloxacin by Microbacterium sp. strain 4N2-2. Appl Environ Microbiol 79:314–321. https://doi.org/10.1128/AEM.02347-12
Knapp JS, Bromley-Challoner KCA (2003) Recalcitrant organic compounds. In: Mara D, Horan N (eds) The handbook of water and wastewater microbiology, 1st edn. Academic, London, pp 559–595
Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710. https://doi.org/10.1016/S0045-6535(99)00439-7
Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755. https://doi.org/10.1016/j.hazmat.2007.07.008
Lewis G, Juhasz A, Smith E (2012) Environmental metabolites of fluoroquinolones: synthesis, fractionation and toxicological assessment of some biologically active metabolites of ciprofloxacin. Environ Sci Pollut Res 19:2697–2707. https://doi.org/10.1007/s11356-012-0766-7
Liao X, Li B, Zou R, Dai Y, Xie S, Yuan B (2016) Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure. Environ Sci Pollut Res 23:7911–7918. https://doi.org/10.1007/s11356-016-6054-1
Lillenberg M, Litvin SV, Nei L, Roasto M, Sepp K (2010) Enrofloxacin and ciprofloxacin uptake by plants from soil. Agron Res 8:807–814
Lindberg RH, Olofsson U, Rendahl P, Johansson MI, Tysklind M, Andersson BAV (2006) Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol 40:1042–1048. https://doi.org/10.1021/es0516211
Liyanage GY, Manage PM (2018) Removal of ciprofloxacin (CIP) by bacteria isolated from hospital effluent water and identification of degradation pathways. Int J Med Pharm Drug Res 2:37–47. https://doi.org/10.22161/ijmpd.2.3.1
Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg RH, Schwesig D, Gawlik BM (2013) EU-wide monitoring survey of emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47:6475–6487. https://doi.org/10.1016/j.watres.2013.08.024
Lucas D, Badia-Fabregat M, Vicent T, Caminal G, Rodríguez-Mozaz S, Balcázar JL, Barceló D (2016) Fungal treatment for removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater. Chemosphere 152:301–308. https://doi.org/10.1016/j.chemosphere.2016.02.113
Magdaleno A, Saenz ME, Juárez AB, Moretton J (2015) Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 113:72–78. https://doi.org/10.1016/j.ecoenv.2014.11.021
Maia AS, Ribeiro AR, Amorim CL, Barreiro JC, Cass QB, Castro PM, Tiritan ME (2014) Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1333:87–98. https://doi.org/10.1016/j.chroma.2014.01.069
Maia AS, Tiritan ME, Castro PML (2018) Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1. Ecotoxicol Environ Saf 155:144–151. https://doi.org/10.1016/j.ecoenv.2018.02.067
Marco-Urrea E, Pérez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772. https://doi.org/10.1016/j.chemosphere.2008.10.040
Marengo JR, Kok RA, Burrows LA, Velagaleti RR, Stamm JM (2001) Biodegradation of 14C-sarafloxacin hydrochloride, a fluoroquinolone antimicrobial by Phanerochaete chrysosporium. J Sci Ind Res 60:121–130
Marquez B, Pourcelle V, Vallet CM, Mingeot-Leclercq M-P, Tulkens PM, Marchand-Bruynaert J, Van Bambeke F (2014) Pharmacological characterization of 7-(4-(piperazin-1-yl)) ciprofloxacin derivatives: antibacterial activity, cellular accumulation, susceptibility to efflux transporters, and intracellular activity. Pharm Res 31:1290–1301. https://doi.org/10.1007/s11095-013-1250-x
Martens R, Wetzstein H-G, Zadrazil F, Capelari M, Hoffmann P, Schmeer N (1996) Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Appl Environ Microbiol 62:4206–4209
Martins N, Pereira R, Abrantes N, Pereira J, Gonçalves F, Marques CR (2012) Ecotoxicological effects of ciprofloxacin on freshwater species: data integration and derivation of toxicity thresholds for risk assessment. Ecotoxicol 21:1167–1176. https://doi.org/10.1007/s10646-012-0871-x
Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244. https://doi.org/10.1016/S0045-6535(03)00272-8
Nakamura R, Yamaguchi T, Sekine Y, Hashimoto M (1983) Determination of a new antibacterial agent (AT-2266) and its metabolites in plasma and urine by high-performance liquid chromatography. J Chromatogr 278:321–328
Nguyen ST, Ding X, Butler MM, Tashjian TF, Peet NP, Bowlin TL (2011) Preparation and antibacterial evaluation of decarboxylated fluoroquinolones. Bioorg Med Chem Lett 21:5961–5963. https://doi.org/10.1016/j.bmcl.2011.07.060
Nguyen LN, Nghiem LD, Oh S (2018) Aerobic biotransformation of the antibiotic ciprofloxacin by Bradyrhizobium sp. isolated from activated sludge. Chemosphere 211:600–607. https://doi.org/10.1016/j.chemosphere.2018.08.004
Opriş O, Copaciu F, Loredana Soran M, Ristoiu D, Niinemets Ü, Copolovici L (2013) Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: leaf volatiles as a promising new tool to assess toxicity. Ecotoxicol Environ Saf 87:70–79. https://doi.org/10.1016/j.ecoenv.2012.09.019
Palmer AC, Angelino E, Kishony R (2010) Chemical decay of an antibiotic inverts selection for resistance. Nat Chem Biol 6:105–107. https://doi.org/10.1038/nchembio.289
Pan M, Chu LM (2017) Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environ Pollut 231:829–836. https://doi.org/10.1016/j.envpol.2017.08.051
Pan L-J, Li J, Li C-X, Tang X-D, Yu G-W, Wang Y (2018) Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. J Hazard Mater 343:59–67. https://doi.org/10.1016/j.hazmat.2017.09.009
Papich MG, Riviere JE (2009) Fluoroquinolone antimicrobial drugs. In: Riviere JE, Papich MG (eds) Veterinary pharmacology and therapeutics, 9th edn. Wiley-Blackwell, Iowa, pp 983–1012
Parshikov IA, Khasaeva FM (2018) Fungal transformation of ofloxacin and enrofloxacin. Asian J Microbiol Biotechnol Environ Sci 20:368–371. https://doi.org/10.18411/0972-3005N2_18
Parshikov IA, Sutherland JB (2012) Microbial transformations of antimicrobial quinolones and related drugs. J Ind Microbiol Biotechnol 39:1731–1740. https://doi.org/10.1007/s10295-012-1194-x
Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (1999) Regioselective transformation of ciprofloxacin to N-acetylciprofloxacin by the fungus Mucor ramannianus. FEMS Microbiol Lett 177:131–135. https://doi.org/10.1111/j.1574-6968.1999.tb13723.x
Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microbiol 66:2664–2667. https://doi.org/10.1128/AEM.66.6.2664-2667.2000
Parshikov IA, Freeman JP, Lay JO, Moody JD, Williams AJ, Beger RD, Sutherland JB (2001a) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol 26:140–144. https://doi.org/10.1038/sj/jim/7000077
Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AJ, Sutherland JB (2001b) The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477. https://doi.org/10.1007/s002530100672
Parshikov IA, Moody JD, Heinze TM, Freeman JP, Williams AJ, Sutherland JB (2002a) Transformation of cinoxacin by Beauveria bassiana. FEMS Microbiol Lett 214:133–136. https://doi.org/10.1111/j.1574-6968.2002.tb11336.x
Parshikov IA, Moody JD, Freeman JP, Lay JO, Williams AJ, Heinze TM, Sutherland JB (2002b) Formation of conjugates from ciprofloxacin and norfloxacin in cultures of Trichoderma viride. Mycologia 94:1–5. https://doi.org/10.2307/3761840
Paul T, Dodd MC, Strathmann TJ (2010) Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res 44:3121–3132. https://doi.org/10.1016/j.watres.2010.03.002
Prieto A, Möder M, Rodil R, Adrian L, Marco-Urrea E (2011) Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour Technol 102:10987–10995. https://doi.org/10.1016/j.biortech.2011.08.055
Purkayastha N, Capone S, Beck AK, Seebach D, Leeds J, Thompson K, Moser HE (2015) Antibacterial activity of enrofloxacin and ciprofloxacin derivatives of β-octaarginine. Chem Biodivers 12:179–193. https://doi.org/10.1002/cbdv.201400456
Rhodes CJ (2014) Mycoremediation (bioremediation with fungi)—growing mushrooms to clean the earth. Chem Speciat Bioavailab 26:196–198. https://doi.org/10.3184/095422914X14047407349335
Riaz L, Mahmood T, Coyne MS, Khalid A, Rashid A, Hayat MT, Gulzar A, Amjad M (2017) Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics. Chemosphere 177:250–257. https://doi.org/10.1016/j.chemosphere.2017.03.033
Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88. https://doi.org/10.1038/nm1347
Robinson AA, Belden JB, Lydy MJ (2005) Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ Toxicol Chem 24:423–430. https://doi.org/10.1897/04-210R.1
Robson RA (1992) Quinolone pharmacokinetics. Int J Antimicrob Agents 2:3–10. https://doi.org/10.1016/0924-8579(92)90020-R
Rosendahl I, Siemens J, Kindler R, Groeneweg J, Zimmermann J, Czerwinski S, Lamshöft M, Laabs V, Wilke B-M, Vereecken H, Amelung W (2012) Persistence of the fluoroquinolone antibiotic difloxacin in soil and lacking effects on nitrogen turnover. J Environ Qual 41:1275–1283. https://doi.org/10.2134/jeq2011.0459
Rusch M, Kauschat A, Spielmeyer A, Römpp A, Hausmann H, Zorn H, Hamscher G (2015) Biotransformation of the antibiotic danofloxacin by Xylaria longipes leads to an efficient reduction of its antibacterial activity. J Agric Food Chem 63:6897–6904. https://doi.org/10.1021/acs.jafc.5b02343
Rusch M, Spielmeyer A, Meißner J, Kietzmann M, Zorn H, Hamscher G (2017) Efficient reduction of antibacterial activity and cytotoxicity of fluoroquinolones by fungal-mediated N-oxidation. J Agric Food Chem 65:3118–3126. https://doi.org/10.1021/acs.jafc.7b01246
Rusch M, Spielmeyer A, Zorn H, Hamscher G (2018) Biotransformation of ciprofloxacin by Xylaria longipes: structure elucidation and residual antibacterial activity of metabolites. Appl Microbiol Biotechnol 102:8573–8584. https://doi.org/10.1007/s00253-018-9231-y
Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026
Schulz J, Kemper N, Hartung J, Janusch F, Mohring SAI, Hamscher G (2019) Analysis of fluoroquinolones in dusts from intensive livestock farming and the co-occurrence of fluoroquinolone-resistant Escherichia coli. Sci Rep 9:5117. https://doi.org/10.1038/s41598-019-41528-z
Shi L, Zhou X, Zhang Y, Gu G (2009) Occurrence and removal of fluoroquinolone antibiotics in a sewage treatment plant in Shanghai, China. 3rd Int Conf Bioinform Biomed Eng 1–4. https://doi.org/10.1109/ICBBE.2009.5163140
Singh SK, Khajuria R, Kaur L (2017) Biodegradation of ciprofloxacin by the white rot fungus Pleaurotus ostreatus. 3 Biotech 7:69. https://doi.org/10.1007/s13205-017-0684-y
Slana M, Pahor V, Cvitkovič Maričič L, Sollner-Dolenc M (2014) Excretion pattern of enrofloxacin after oral treatment of chicken broilers. J Vet Pharmacol Ther 37:611–614. https://doi.org/10.1111/jvp.12130
Sörgel F (1989) Metabolism of gyrase inhibitors. Rev Infect Dis 11:S1119–S1129. https://doi.org/10.1093/clinids/11.Supplement_5.S1119
Sturini M, Speltini A, Maraschi F, Pretali L, Profumo A, Fasani E, Albini A, Migliavacca R, Nucleo E (2012) Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts. Water Res 46:5575–5582. https://doi.org/10.1016/j.watres.2012.07.043
Sun J, Zeng Q, Tsang DCW, Zhu LZ, Li XD (2017) Antibiotics in the agricultural soils from the Yangtze River Delta, China. Chemosphere 189:301–308. https://doi.org/10.1016/j.chemosphere.2017.09.040
Terzic S, Senta I, Matosic M, Ahel M (2011) Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem 401:353–363. https://doi.org/10.1007/s00216-011-5060-x
Touahar IE, Haroune L, Ba S, Bellenger J-P, Cabana H (2014) Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Sci Total Environ 481:90–99. https://doi.org/10.1016/j.scitotenv.2014.01.132
Trouchon T, Lefebvre S (2016) A review of enrofloxacin for veterinary use. Open J Vet Med 6:40–58. https://doi.org/10.4236/ojvm.2016.62006
Wang L, Qiang Z, Li Y, Ben W (2017) An insight into the removal of fluoroquinolones in activated sludge process: sorption and biodegradation characteristics. J Environ Sci 56:263–271. https://doi.org/10.1016/j.jes.2016.10.006
Wetzstein H-G, Hallenbach W (2011) Tuning of antibacterial activity of a cyclopropyl fluoroquinolone by variation of the substituent at position C-8. J Antimicrob Chemother 66:2801–2808. https://doi.org/10.1093/jac/dkr372
Wetzstein H-G, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol 63:4272–4281
Wetzstein H-G, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65:1556–1563
Wetzstein H-G, Schneider J, Karl W (2006) Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites. Appl Microbiol Biotechnol 71:90–100. https://doi.org/10.1007/s00253-005-0178-4
Wetzstein H-G, Schneider J, Karl W (2009) Comparative biotransformation of fluoroquinolone antibiotics in matrices of agricultural relevance. In: Henderson KL, Coats JR (eds) Veterinary pharmaceuticals in the environment, ACS symposium series, vol 1018. American Chemical Society, Washington, DC, pp 67–91
Wetzstein H-G, Schneider J, Karl W (2012) Metabolite proving fungal cleavage of the aromatic core part of a fluoroquinolone antibiotic. AMB Express 2:3. https://doi.org/10.1186/2191-0855-2-3
WHO (2017) WHO model list of essential medicines, 20th edition. http://apps.who.int/iris/bitstream/handle/10665/273826/EML-20-eng.pdf?ua=1. Accessed 8 July 2019
WHO (2018) Critically important antimicrobials for human medicine, 6th revision. http://www.who.int/foodsafety/publications/antimicrobials-sixth/en/. Accessed 8 July 2019
Williams AJ, Parshikov IA, Moody JD, Heinze TM, Sutherland JB (2004) Fungal transformation of an antimicrobial fluoroquinolone drug during growth on poultry litter materials. J Appl Poult Res 13:235–240. https://doi.org/10.1093/japr/13.2.235
Williams AJ, Deck J, Freeman JP, Chiarelli MP, Adjei MD, Heinze TM, Sutherland JB (2007) Biotransformation of flumequine by the fungus Cunninghamella elegans. Chemosphere 67:240–243. https://doi.org/10.1016/j.chemosphere.2006.10.016
Wu M-H, Que C-J, Xu G, Sun Y-F, Ma J, Xu H, Sun R, Tang L (2016) Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicol Environ Saf 132:132–139. https://doi.org/10.1016/j.ecoenv.2016.06.006
Zeiler HJ, Petersen U, Gau W, Ploschke HJ (1987) Antibacterial activity of the metabolites of ciprofloxacin and its significance in the bioassay. Arzneimittelforsch 37:131–134
Zhao R, Li X, Hu M, Li S, Zhai Q, Jiang Y (2017) Efficient enzymatic degradation used as pre-stage treatment for norfloxacin removal by activated sludge. Bioprocess Biosyst Eng 40:1261–1270. https://doi.org/10.1007/s00449-017-1786-y
Zhao F, Chen L, Yang L, Li S, Sun L, Yu X (2018) Distribution, dynamics and determinants of antibiotics in soils in a peri-urban area of Yangtze River Delta, eastern China. Chemosphere 211:261–270. https://doi.org/10.1016/j.chemosphere.2018.07.162
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(PDF 246 kb)
Rights and permissions
About this article
Cite this article
Rusch, M., Spielmeyer, A., Zorn, H. et al. Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin. Appl Microbiol Biotechnol 103, 6933–6948 (2019). https://doi.org/10.1007/s00253-019-10017-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-019-10017-8