[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A comprehensive framework for link prediction in multiplex networks

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The idea of predicting links in multiplex networks has gained increasing interest in recent years. In this paper, we propose a comprehensive framework which benefits from the structural information of auxiliary layers to predict links on a target layer of multiplex networks. Specifically, we assume that the likelihood of the existence of a link between two nodes is determined by the contributions from both the nodes’ neighbors on the target layer and their counterparts’ neighbors on a manually network generated by auxiliary layers. The final likelihood matrix is acquired by an iterative algorithm. In addition, we show advantages of our methods for predicting links on sparse and dense networks as well as on networks with assortative and disassortative structural layers. The effectiveness of the proposed methods are evaluated through extensive experiments on real-world multiplex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdolhosseini Q, Amir M, Naser Y, Masoud A (2020) Overlapping communities and the prediction of missing links in multiplex networks. Phys A: Stat Mech Appl 554:124650

    Article  MathSciNet  Google Scholar 

  • Adamic LA, Adar E (2003) Friends and neighbors on the web. Soc Netw 25(3):211–230

    Article  Google Scholar 

  • Aiello LM et al (2012) Friendship prediction and homophily in social media. ACM Transact Web (TWEB) 6(2):1–33

    Article  Google Scholar 

  • Al Hasan M, et al (2006) Link prediction using supervised learning. In: SDM06: workshop on link analysis, counter-terrorism and security 30: 798-805

  • Bargigli L et al (2015) The multiplex structure of interbank networks. Quant Financ 15:673–691

    Article  MathSciNet  Google Scholar 

  • Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20(3):353–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J et al (2019) E-lstm-d: A deep learning framework for dynamic network link prediction. IEEE Transact Syst, Man, and Cybernet: Syst 51(6):3699–3712

    Article  Google Scholar 

  • Chuan PM et al (2018) Link prediction in co-authorship networks based on hybrid content similarity metric. Appl Intell 48(8):2470–2486

    Article  Google Scholar 

  • Coleman J, Katz E, Menzel H (1957) The Diffusion of an Innovation Among Physicians. Sociometry 20:253–270

    Article  Google Scholar 

  • Cui P, Wang X, Pei J, Zhu W (2019) A survey on network embedding. IEEE Transact Knowl Data Eng 31(5):833–852

    Article  Google Scholar 

  • Davis D, Lichtenwalter R, Chawla N V (2011) Multi-relational link prediction in heterogeneous information networks. In: 2011 International conference on advances in social networks analysis and mining. IEEE, 281-288

  • De Bacco C, Power EA, Larremore DB, Moore C (2017) Community detection, link prediction, and layer interdependence in multilayer networks. Phys Rev E 95(4):042317

    Article  PubMed  ADS  Google Scholar 

  • De Domenico M, Nicosia V, Arenas A, Latora V (2015) Structural reducibility of multilayer networks. Nat Communicat 6:6864

    Article  ADS  Google Scholar 

  • De Domenico M, Solé-Ribalta A, Gómez S, Arenas A (2014) Navigability of interconnected networks under random failures. PNAS 111:8351–8356

    Article  MathSciNet  PubMed  PubMed Central  ADS  Google Scholar 

  • Goyal P, Ferrara E (2018) Graph embedding techniques, applications, and performance: A survey. Knowl-Based Syst 151:78–94

    Article  Google Scholar 

  • Hanley JA, Mcneil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Hristova D et al (2016) A multilayer approach to multiplexity and link prediction in online geo-social networks. EPJ Data Sci 5(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Jalili M, Orouskhani Y, Asgari M et al (2017) Link prediction in multiplex online social networks. Royal Soc Open Sci 4(2):160863

    Article  MathSciNet  ADS  Google Scholar 

  • Jones S (2006) Terrorism in Indonesia: Noordin’s Networks. Asia Report 114

  • Kao TC, Porter MA (2018) Layer communities in multiplex networks. J Stat Phys 173(3–4):1286–1302

    Article  ADS  Google Scholar 

  • Kapferer B (1972) Strategy and transaction in an African factory: African workers and Indian management in a Zambian town. Manchester University Press, Manchester

    Google Scholar 

  • Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43

    Article  Google Scholar 

  • Kivelä M et al (2014) Multilayer networks. Journal of Complex. Networks 2(3):203–271

    Google Scholar 

  • Kleineberg KK, Boguã M, Ángeles Serrano M, Papadopoulos F (2016) Hidden geometric correlations in real multiplex networks. Nat Phys 12:1076–1081

    Article  CAS  Google Scholar 

  • Kovács IA et al (2019) Network-based prediction of protein interactions. Nat Commun 10:1240

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Lazega E (2001) The collegial phenomenon: The social mechanisms of cooperation among peers in a corporate law partnership. Oxford University Press on Demand, Oxford

    Book  Google Scholar 

  • Leicht EA, Holme P, Newman MEJ (2006) Vertex similarity in networks. Phys Rev E 73(2):026120

    Article  CAS  ADS  Google Scholar 

  • Lü L et al (2012) Recommender systems. Phys Rep 519(1):1–49

    Article  ADS  Google Scholar 

  • Lü L, Zhou T (2011) Link prediction in complex networks: A survey. Phys A: stat Mech Appl 390(6):1150–1170

    Article  Google Scholar 

  • Magnani M, Micenkova B, Rossi L. (2013) Combinatorial analysis of multiple networks. arXiv preprint arXiv:1303.4986

  • Najari S, Salehi M, Ranjbar V et al (2019) Link prediction in multiplex networks based on interlayer similarity. Phys A: Stat Mech Appl 536:120978

    Article  Google Scholar 

  • Pan L, Zhou T, Lü L, Hu CK (2016) Predicting missing links and identifying spurious links via likelihood analysis. Sci Rep 6:22955

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Pujari M, Kanawati R (2015) Link prediction in multiplex networks. Netw Hetero Med 10(1):17

    Article  MathSciNet  Google Scholar 

  • Qiu J, et al (2019) NetSMF: Large-scale network embedding as sparse matrix factorization. In: proceedings of the world wide Web conference (ACM Press) 1509–1520

  • Ratha Pech et al (2019) Link prediction via linear optimization. Phys A: Stat Mech Appl 528:121319

    Article  MathSciNet  Google Scholar 

  • Roberto Interdonato et al (2020) Multilayer network simplification: approaches, models and methods. Comput Sci Rev 36:100246

    Article  MathSciNet  Google Scholar 

  • Samei Z, Jalili M (2019) Application of hyperbolic geometry in link prediction of multiplex networks. Sci Rep 9(1):1–11

    Article  CAS  ADS  Google Scholar 

  • Sen A, et al (2014) Identification of \(k\) most vulnerable nodes in multi-layered network using a new model of interdependency. In: 2014 IEEE conference on computer communications workshops (INFOCOM WKSHPS) 831-836

  • Tang Fengqin et al (2022) Link prediction for multilayer networks using interlayer structural information. Inter J Modern Phys C 33(01):2250003

    Article  ADS  Google Scholar 

  • Varshney LR et al (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7(2):e1001066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  • Yang Y, et al (2012) Predicting links in multi-relational and heterogeneous networks. In: IEEE 12th international conference on data mining 755–764

  • Yao Y et al (2017) Link prediction via layer relevance of multiplex networks. Int J Modern Phys C 28(08):1750101

    Article  ADS  Google Scholar 

  • Yasami Y, Safaei F (2018) A novel multilayer model for missing link prediction and future link forecasting in dynamic complex networks. Phys A: Stat Mech Appl 492:2166–2197

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Levina E, Zhu J (2015) Estimating network edge probabilities by neighbourhood smoothing. Biometrika 104(4):771–783

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors also thank Professor Bingyi Jing for discussions related to this paper. The project was sponsored by National Natural Science Foundation of China (12201235, 11971214), Natural Science Foundation of Anhui Province (2108085QA14) and the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province (gxyqZD2022044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqin Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Li, C., Wang, C. et al. A comprehensive framework for link prediction in multiplex networks. Comput Stat 39, 939–961 (2024). https://doi.org/10.1007/s00180-023-01334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-023-01334-8

Keywords

Navigation