[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Novel Robust Adaptive Beamformer in the Presence of Gain-Phase Errors

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of robust adaptive beamforming (RAB) for a linear array in the presence of gain-phase errors. By setting a few calibrated auxiliary elements on one side of a linear array, we propose a novel gain error and phase error estimation algorithm to calibrate gain-phase errors. According to the proposed estimation algorithm, the unknown gain error and phase error are jointly estimated by calculating the eigenvector corresponding to the minimum eigenvalue of the available transitional matrices. Furthermore, we calibrate the received data and compensate for the nonwhite noise caused by the calibration process. Then, the interference-plus-noise covariance matrix (INCM) is reconstructed based on the calibrated steering vector. By incorporating the reconstructed INCM with the minimum variance distortionless response principle, a novel robust adaptive beamformer for a linear array with gain-phase errors is designed. The proposed beamformer can obviously improve RAB performance in a linear array with gain-phase errors. The robustness and superiority of the designed beamformer are demonstrated in simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. S. Cao, Z. Ye, D. Xu, X. Xu, A Hadamard product-based method for DOA estimation and gain-phase error calibration. IEEE Trans. Aerosp. Electron. Syst. 49(2), 1224–1233 (2013)

    Article  Google Scholar 

  2. J. Capon, High resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57(8), 1408–1418 (1969)

    Article  Google Scholar 

  3. H. Cox, R.M. Zeskind, M.M. Owen, Robust adaptive beamforming. IEEE Trans. Acoust. Speech Signal Process. 35(10), 1365–1376 (1987)

    Article  Google Scholar 

  4. Q. Ge, Y. Zhang, Y. Wang, A low complexity algorithm for direction of arrival estimation with direction-dependent mutual coupling. IEEE Commun. Lett. 24(1), 90–94 (2020)

    Article  Google Scholar 

  5. B. Gershman, E. Nemeth, J.F. Bohme, Experimental performance of adaptive beamforming in a sonar environment with a towed array and moving interfering sources. IEEE Trans. Signal Process. 48(1), 246–250 (2000)

    Article  Google Scholar 

  6. J. Gu, Robust beamforming based on variable loading. Electron. Lett. 41(2), 55–56 (2005)

    Article  Google Scholar 

  7. Y. Gu, A. Leshem, Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal Process. 60(7), 3881–3885 (2012)

    Article  MathSciNet  Google Scholar 

  8. Y. Gu, N.A. Goodman, S. Hong, Y. Li, Robust adaptive beamforming based on interference covariance matrix sparse reconstruction. Signal Process. 96, 375–381 (2014)

    Article  Google Scholar 

  9. J. Li, P. Stoica, Robust adaptive beamforming (Wiley, New York, 2005)

    Book  Google Scholar 

  10. J. Li, P. Stoica, Z. Wang, On robust capon beamforming and diagonal loading. IEEE Trans. Signal Process. 51(7), 1702–1715 (2003)

    Article  Google Scholar 

  11. J. Li, G. Wei, Y. Ding, Adaptive beamforming based on covariance matrix reconstruction by exploiting interferences’ cyclostationarity. Signal Process. 93(9), 2543–2547 (2013)

    Article  Google Scholar 

  12. B. Liao, S.C. Chan, Adaptive beamforming for uniform linear arrays with unknown mutual coupling. IEEE Antennas Wireless Propag. Lett. 11, 464–467 (2012)

    Article  Google Scholar 

  13. K. Liu, Y.D. Zhang, Coprime array-based robust beamforming using covariance matrix reconstruction technique. IET Commun. 12(17), 2206–2212 (2018)

    Article  MathSciNet  Google Scholar 

  14. A. Liu, G. Liao, C. Zeng, Z. Yang, Q. Xu, An eigenstructure method for estimating DOA and sensor gain-phase errors. IEEE Trans. Signal Process. 59(12), 5944–5956 (2011)

    Article  MathSciNet  Google Scholar 

  15. K. Sun, J. Qiu, H.R. Karimi, Y. Fu, Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/tfuzz.2020.2979129. (In press)

    Article  Google Scholar 

  16. K. Sun, L. Liu, G. Feng, Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems. IEEE Trans Fuzzy Syst (2020). https://doi.org/10.1109/tfuzz.2020.2965890. (In press)

    Article  Google Scholar 

  17. S.A. Vorobyov, Principles of minimum variance robust adaptive beamforming design. Signal Process. 93(12), 3264–3277 (2013)

    Article  Google Scholar 

  18. S.A. Vorobyov, A.B. Gershman, Z.-Q. Luo, Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal Process. 51(2), 313–324 (2003)

    Article  Google Scholar 

  19. B. Wang, Y. Wang, H. Chen, Array calibration of angularly dependent gain and phase uncertainties with instrumental sensors. in Proceedings of the 2003 IEEE International Symposium on Phased Array Systems and Technology, pp. 14-17 (2003)

  20. M. Wang, A. Nehorai, Coarrays, MUSIC, and the Cramér-Rao Bound. IEEE Trans. Signal Process. 65(4), 933–946 (2017)

    Article  MathSciNet  Google Scholar 

  21. Z. Xiang, M. Tao, Robust beamforming for wireless information and power transmission. IEEE Wireless Commun. Lett. 1(4), 372–375 (2012)

    Article  Google Scholar 

  22. X. Yang, J. Xie, H. Li, Z. He, Robust adaptive beamforming of coherent signals in the presence of the unknown mutual coupling. IET Commun. 12(1), 75–81 (2018)

    Article  Google Scholar 

  23. L. Yang, Y. Yang, J. Yang, Robust adaptive beamforming for uniform linear arrays with sensor gain and phase uncertainties. IEEE Access 7(1), 2677–2685 (2018)

    Google Scholar 

  24. Z. Ye, C. Liu, Non-sensitive adaptive beamforming against mutual coupling. IET Signal Process. 3(1), 1–6 (2009)

    Article  Google Scholar 

  25. X. Yuan, L. Gan, Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction. Signal Process. 130(1), 233–242 (2017)

    Article  Google Scholar 

  26. Z. Zhang, W. Liu, W. Leng, A. Wang, H. Shi, Interference-plus-noise covariance matrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming. IEEE Signal Process. Lett. 23(1), 121–125 (2016)

    Article  Google Scholar 

  27. Z. Zheng, T. Yang, W.-Q. Wang, H.C. So, Robust adaptive beamforming via simplified interference power estimation. IEEE Trans. Aerosp. Electron. Syst. 55(6), 3139–3152 (2019)

    Article  Google Scholar 

  28. Z. Zheng, K. Liu, W.-Q. Wang, Y. Yang, J. Yang, Robust adaptive beamforming against mutual coupling based on mutual coupling coefficients estimation. IEEE Trans. Veh. Technol. 66(10), 9124–9133 (2017)

    Article  Google Scholar 

  29. C. Zhou, Y. Gu, S. He, Z. Shi, A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 67(2), 1099–1112 (2018)

    Article  Google Scholar 

  30. J. Zhuang, Q. Ye, Q. Tan, A.H. Ali, Low-complexity variable loading for robust adaptive beamforming. Electron. Lett. 52(5), 338–340 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61901511 and 61871471, in part by the National Science Foundation in Shaanxi Province of China under Grant 2019JM-322, in part by the Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2020JQ-478, and in part by the Research Program of the National University of Defense Technology under Grant ZK19-10.

Author information

Authors and Affiliations

Authors

Contributions

Q. G and Z. F contributed to data curation; Q. G helped with methodology; Y. Z contributed to project administration; and X. L helped with funding acquisition.

Corresponding author

Correspondence to Qichao Ge.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Code Availability

The program and code used in this manuscript are available. If anyone wants to use these programs, please contact the author directly. The author will send the program to anyone who requests it through email for the first time after receiving the request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The proof by contradiction approach is used to prove the feasibility of the proposed joint estimation algorithm.

It is assumed that \( \theta_{l} ,l = 1,2, \ldots ,L \) are the DOAs of the incident signals and that there is another angle \( \theta_{i} \ne \theta_{l} , \) \( l = 1,2, \ldots ,L \) that makes \( {\mathbf{Q}}\left( {\theta_{i} } \right) \) a singular matrix. Through the previous analysis, we can obtain

$$ {\varvec{\upchi}}^{H} {\mathbf{Q}}\left( {\theta_{i} } \right){\varvec{\upchi}} = 0. $$
(61)

Substituting (36) into (61) yields

$$ {\mathbf{a}}^{H} \left( {\theta_{i} } \right){\varvec{\Phi}}^{H} {\tilde{\mathbf{U}}}_{n} {\tilde{\mathbf{U}}}_{n}^{H} {\boldsymbol{\varPhi} {\bf a}}\left( {\theta_{i} } \right) = 0. $$
(62)

That is,

$$ {\tilde{\mathbf{a}}}^{H} \left( {\theta_{i} } \right){\tilde{\mathbf{U}}}_{n} {\tilde{\mathbf{U}}}_{n}^{H} {\tilde{\mathbf{a}}}\left( {\theta_{i} } \right) = 0. $$
(63)

Therefore, \( {\tilde{\mathbf{a}}}\left( {\theta_{i} } \right) \) is orthogonal to the noise subspace, that is,

$$ {\tilde{\mathbf{a}}}\left( {\theta_{i} } \right) \in \text{span} \left\{ {{\mathbf{u}}_{1} ,{\mathbf{u}}_{2} , \ldots ,{\mathbf{u}}_{L} } \right\}. $$
(64)

Since \( {\tilde{\mathbf{a}}}\left( {\theta_{l} } \right),l = 1,2, \ldots ,L \) can also span the signal subspace, we can obtain

$$ {\tilde{\mathbf{a}}}\left( {\theta_{i} } \right) \in \text{span} \left\{ {{\tilde{\mathbf{a}}}\left( {\theta_{1} } \right),{\tilde{\mathbf{a}}}\left( {\theta_{2} } \right), \ldots ,{\tilde{\mathbf{a}}}\left( {\theta_{L} } \right)} \right\}. $$
(65)

Therefore, there is a set \( k_{l} ,\;\;l = 1,2, \ldots ,L,\;\;k_{1} k_{2} \ldots k_{L} \ne 0 \) such that

$$ {\tilde{\mathbf{a}}}\left( {\theta_{i} } \right) = k_{1} {\tilde{\mathbf{a}}}\left( {\theta_{1} } \right) + k_{2} {\tilde{\mathbf{a}}}\left( {\theta_{2} } \right) + \cdots + k_{L} {\tilde{\mathbf{a}}}\left( {\theta_{L} } \right). $$
(66)

In an array without grating lobes, the steering vector corresponding to each angle (from 0 to \( \pi \)) is uncorrelated; namely, \( {\tilde{\mathbf{a}}}\left( {\theta_{l} } \right),\;l = 1,2, \ldots ,L \) and \( {\tilde{\mathbf{a}}}\left( {\theta_{i} } \right) \) are uncorrelated. Therefore, in the set \( k_{l} ,\;\;l = 1,2, \ldots ,L,\;\;k_{1} k_{2} \ldots k_{L} \ne 0 \), only one element is equal to 1, and the rest are all equal to 0. That is, \( \theta_{i} \) is one DOA of the incident signals, which is the opposite of the assumption. That is, all the angles that make \( {\mathbf{Q}}\left( \theta \right) \) a singular matrix are the DOA estimations of the signals.

Appendix B

Here, we define the parameter vector

$$ {\varvec{\upbeta}} = \left[ {\varepsilon_{ 2} ,\varepsilon_{ 3} , \ldots ,\varepsilon_{G} ,\;\varsigma_{ 2} ,\varsigma_{ 3} , \ldots ,\varsigma_{G} } \right], $$
(67)

where

$$ \left\{ {\begin{array}{*{20}l} {\varepsilon_{g} = \alpha_{g + P - 1} } \hfill \\ {\varsigma_{g} = \varphi_{g + P - 1} } \hfill \\ \end{array} } \right.,\quad g = 2,3, \ldots ,G, $$
(68)

where \( G = M - P + 1 \).

Therefore, the \( (m,n) \)th element of the Fisher information matrix (FIM) is given by Wang et al. [20]:

$$ \begin{aligned} \text{FIM}_{{\left( {m,n} \right)}} & = K\text{tr} \left( {\frac{{\partial {\mathbf{R}}_{{\tilde{x}}} }}{{\partial \beta_{m} }}{\mathbf{R}}_{{\tilde{x}}}^{ - 1} \frac{{\partial {\mathbf{R}}_{{\tilde{x}}} }}{{\partial \beta_{n} }}{\mathbf{R}}_{{\tilde{x}}}^{ - 1} } \right) \\ & = K\left( {\frac{{\partial {\mathbf{r}}}}{{\partial \beta_{m} }}} \right)^{H} \left( {{\mathbf{R}}_{{\tilde{x}}}^{T} \otimes {\mathbf{R}}_{{\tilde{x}}} } \right)^{ - 1} \left( {\frac{{\partial {\mathbf{r}}}}{{\partial \beta_{n} }}} \right), \\ \end{aligned} $$
(69)

where

$$ {\mathbf{R}}_{{\tilde{x}}} = E\left[ {{\tilde{\mathbf{x}}}(k){\tilde{\mathbf{x}}}^{H} (k)} \right] = {\boldsymbol{\Psi }}{\mathbf{AR}}_{s} {\mathbf{A}}^{H} {\boldsymbol{\Psi }}^{H} + \sigma _{n}^{2} {\mathbf{I}}_{M} $$
(70)
$$ {\mathbf{r}} = {\text{vec}}\left( {{\mathbf{R}}_{{\tilde{x}}} } \right) = \left( {{\varvec{\Psi}}^{ * } {\mathbf{A}}^{ * } \odot {\boldsymbol{\varPsi}{\bf A}}} \right){\mathbf{p}} + \sigma_{n}^{2} {\text{vec}}\left( {{\mathbf{I}}_{M} } \right), $$
(71)

where \( {\mathbf{p}} = \text{diag} ({\mathbf{R}}_{s} ) = [\sigma_{0}^{2} ,\sigma_{1}^{2} , \ldots ,\sigma_{L - 1}^{2} ]^{T} \) and \( \text{vec} ( \cdot ) \), \( ( \cdot )^{ * } \), and \( \odot \) denote the vectorization of a matrix, the conjugate, and the Khatri–Rao product, respectively.

From (67), we obtain

$$ \frac{{\partial {\mathbf{r}}}}{{\partial {\varvec{\upbeta}}}} = \left[ {\frac{{\partial {\mathbf{r}}}}{{\partial {\varvec{\upvarepsilon}}}},\frac{{\partial {\mathbf{r}}}}{{\partial {\boldsymbol{\varsigma }}}}} \right] = \left[ {\frac{{\partial {\mathbf{r}}}}{{\partial \varepsilon_{ 2} }},\frac{{\partial {\mathbf{r}}}}{{\partial \varepsilon_{ 3} }}, \cdots ,\frac{{\partial {\mathbf{r}}}}{{\partial \varepsilon_{G} }},\frac{{\partial {\mathbf{r}}}}{{\partial \varsigma_{ 2} }},\frac{{\partial {\mathbf{r}}}}{{\partial \varsigma_{ 3} }}, \cdots ,\frac{{\partial {\mathbf{r}}}}{{\partial \varsigma_{G} }}} \right], $$
(72)

where \( {\varvec{\upvarepsilon}} = [\varepsilon_{ 2} ,\varepsilon_{ 3} , \ldots ,\varepsilon_{G} ] \), \( {\boldsymbol{\varsigma }} = [\varsigma_{ 2} ,\varsigma_{ 3} , \ldots ,\varsigma_{G} ] \).

Based on (71), we can compute the derivatives in (72) and obtain

$$ \frac{{\partial {\mathbf{r}}}}{{\partial \varepsilon_{n} }} = \left( {\left( {e^{{ - j\varphi_{P + n - 1} }} {\mathbf{E}}_{n} {\mathbf{A}}^{ * } } \right) \odot {\tilde{\mathbf{A}}} + {\tilde{\mathbf{A}}}^{ * } \odot \left( {e^{{j\varphi_{P + n - 1} }} {\mathbf{E}}_{n} {\mathbf{A}}} \right)} \right){\mathbf{p}}, $$
(73)
$$ \frac{{\partial {\mathbf{r}}}}{{\partial \varsigma_{n} }} = \left( {\left( { - j\chi_{n}^{ * } {\mathbf{E}}_{n} {\mathbf{A}}^{ * } } \right) \odot {\tilde{\mathbf{A}}} + {\tilde{\mathbf{A}}}^{ * } \odot \left( {j\chi_{n} {\mathbf{E}}_{n} {\mathbf{A}}} \right)} \right){\mathbf{p}}, $$
(74)

where \( {\tilde{\mathbf{A}}} = {\boldsymbol{\varPsi}{\bf A}} \).

Furthermore,

$$ \frac{{\partial {\mathbf{r}}}}{{\partial {\varvec{\upvarepsilon}}}} = \left( {{\mathbf{B}}^{ * } \odot {\mathbf{D}} + {\mathbf{D}}^{ * } \odot {\mathbf{B}}} \right)\left( {{\mathbf{I}}_{G - 1} \otimes {\mathbf{p}}} \right), $$
(75)
$$ \frac{{\partial {\mathbf{r}}}}{{\partial {\boldsymbol{\varsigma }}}} = \left( {{\mathbf{C}}^{ * } \odot {\mathbf{D}} + {\mathbf{D}}^{ * } \odot {\mathbf{C}}} \right)\left( {{\mathbf{I}}_{G - 1} \otimes {\mathbf{p}}} \right), $$
(76)

where \( {\mathbf{I}}_{G - 1} \in {\mathbb{R}}^{(G - 1) \times (G - 1)} \) is an identity matrix,

$$ {\mathbf{B}} = {\mathbf{H}}\left( {{\varvec{\Phi}}_{G - 1} \otimes {\mathbf{I}}_{L} } \right), $$
(77)
$$ {\mathbf{C}} = j{\mathbf{H}}\left( {{\varvec{\Psi}}_{G - 1} \otimes {\mathbf{I}}_{L} } \right), $$
(78)
$$ {\mathbf{D}} = {\mathbf{i}}_{G - 1} \otimes {\tilde{\mathbf{A}}}, $$
(79)
$$ {\mathbf{H}} = \left[ {{\mathbf{E}}_{2} {\mathbf{A}},{\mathbf{E}}_{3} {\mathbf{A}}, \ldots ,{\mathbf{E}}_{G} {\mathbf{A}}} \right], $$
(80)

where \( {\mathbf{i}}_{G - 1} { = }[1,1, \ldots ,1] \in {\mathbb{R}}^{{1 \times \left( {G - 1} \right)}} \), \( {\mathbf{I}}_{L} \in {\mathbb{R}}^{L \times L} \) is an identity matrix and

$$ {\varvec{\Phi}}_{G - 1} = {\text{diag}}\left\{ {e^{{j\varphi_{P + 1} }} ,e^{{j\varphi_{P + 2} }} , \ldots ,e^{{j\varphi_{M} }} } \right\}, $$
(81)
$$ {\varvec{\Psi}}_{G - 1} = {\text{diag}}\left\{ {\chi_{2} ,\chi_{3} , \ldots ,\chi_{G} } \right\}. $$
(82)

Recall that from (69), the FIM can be expressed as

$$ \text{FIM} = K\left( {\frac{{\partial {\mathbf{r}}}}{{\partial {\varvec{\upbeta}}}}} \right)^{H} \left( {{\mathbf{R}}_{{\tilde{x}}}^{T} \otimes {\mathbf{R}}_{{\tilde{x}}} } \right)^{ - 1} \left( {\frac{{\partial {\mathbf{r}}}}{{\partial {\varvec{\upbeta}}}}} \right). $$
(83)

Since \( {\mathbf{R}}_{{\tilde{x}}} \) is a positive definite matrix, \( ({\mathbf{R}}_{{\tilde{x}}}^{T} \otimes {\mathbf{R}}_{{\tilde{x}}} )^{ - 1} \) is also a positive definite matrix. Therefore, we can define

$$ {\mathbf{F}} = \left( {{\mathbf{R}}_{{\tilde{x}}}^{T} \otimes {\mathbf{R}}_{{\tilde{x}}} } \right)^{{ - \frac{1}{2}}} \left( {\frac{{\partial {\mathbf{r}}}}{{\partial {\varvec{\upbeta}}}}} \right). $$
(84)

Hence, (83) can be rewritten as

$$ \text{FIM} = K\left( {{\mathbf{F}}^{H} {\mathbf{F}}} \right). $$
(85)

Finally, the CRB of each parameter is given by

$$ \text{CRB} = \frac{1}{K}\left( {{\mathbf{F}}^{H} {\mathbf{F}}} \right)^{ - 1} . $$
(86)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Q., Zhang, Y., Feng, Z. et al. Novel Robust Adaptive Beamformer in the Presence of Gain-Phase Errors. Circuits Syst Signal Process 40, 1926–1947 (2021). https://doi.org/10.1007/s00034-020-01568-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01568-7

Keywords

Navigation