Abstract
The Indian summer monsoon rainfall (ISMR, June–September) is an important factor in agricultural planning and the Indian economy. The ISMR over East India (EI: Chhattisgarh-Bihar-Jharkhand-Odisha) is particularly significant, and it can have an impact on the country's average ISMR. The current study examined projected changes in ISMR over EI with two emission scenarios, RCP4.5 and RCP8.5, for near (2017–2040) and far-future (2041–2070) projections using a set of ten CORDEX-SA Regional Climate Model (RCMs). To begin, the performance of raw and bias-corrected ISMR over EI outputs from ten CORDEX-SA RCMs was compared to a high-resolution (0.25° × 0.25°) gridded rainfall analysis dataset from the India Meteorological Department (IMD) over the hindcast period (1971–2005). Following that, bias-corrected results were used to calculate ISMR projections over EI for the near and distant futures. Most RCMs, according to the findings, can imitate the spatial pattern of ISMR across EI but are restricted in their ability to capture actual magnitudes. Notably, RCM prediction skill increased greatly after employing various bias-correction approaches, the quantile mapping (QQM) bias-correction technique outperformed other current conventional bias correction methods, and the QQM technique was employed for ISMR future projections using RCP4.5 and RCP8.5 emission scenarios. The analysis of ISMR projections over EI reveals that there will be more deficit rainfall years in the short term while more excess rainfall years in the far future.
Similar content being viewed by others
Data Availability
The IMD observation rainfall information is freely available on https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html for all India domain and CORDEX-SA regional climate models data are available on https://esgf-data.dkrz.de/search/cordex-dkrz/, The datasets extracted for East India and/or analyzed during the current study will be available from the corresponding author on request.
Code Availability
The code used for the study will be available from the corresponding author on request.
References
Acharya, N., Chattopadhyay, S., Mohanty, U. C., Dash, S. K., & Sahoo, L. N. (2013). On the bias correction of general circulation model output for Indian summer monsoon. Meteorological Applications, 20(3), 349–356. https://doi.org/10.1002/met.1294
Ajaaj, A. A., Mishra, A., & Khan, A. A. (2016). Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate. Stochastic Environmental Research and Risk Assessment, 30(6), 1659–1675. https://doi.org/10.1007/s00477-015-1155-9
Barde, V., Nageswararao, M. M., Mohanty, U. C., Panda, R. K., & Ramadas, M. (2020). Characteristics of southwest summer monsoon rainfall events over East India. Theoretical and Applied Climatology, 141(3), 1511–1528. https://doi.org/10.1007/s00704-020-03251-y
Bhatla, R., Singh, M., Mall, R. K., Tripathi, A., & Raju, P. V. S. (2015). Variability of summer monsoon rainfall over Indo-Gangetic plains in relation to El-Nino/La-Nina. Natural Hazards, 78(2), 837–853. https://doi.org/10.1007/s11069-015-1746-2
Chaturvedi, R. K., Joshi, J., Jayaraman, M., Bala, G., & Ravindranath, N. H. (2012). Multi-model climate change projections for India under representative concentration pathways. Current Science, 20, 791–802.
Choudhary, A., & Dimri, A. P. (2019). On bias correction of summer monsoon precipitation over India from CORDEX-SA simulations. International Journal of Climatology, 39(3), 1388–1403. https://doi.org/10.1002/joc.5889
Choudhary, A., Dimri, A. P., & Maharana, P. (2018). Assessment of CORDEX-SA experiments in representing precipitation climatology of summer monsoon over India. Theoretical and Applied Climatology, 134(1), 283–307. https://doi.org/10.1007/s00704-017-2274-7
Das, P. K., Dutta, D., Sharma, J. R., & Dadhwal, V. K. (2016). Trends and behaviour of meteorological drought (1901–2008) over Indian region using standardized precipitation–evapotranspiration index. International Journal of Climatology, 36(2), 909–916. https://doi.org/10.1002/joc.4392
Dey, P., & Sarkar, A. K. (2011). Revisiting indigenous farming knowledge of Jharkhand (India) for conservation of natural resources and combating climate change.
Dimri, A. P., Kumar, D., Chopra, S., & Choudhary, A. (2019). Indus River Basin: Future climate and water budget. International Journal of Climatology, 39(1), 395–406. https://doi.org/10.1002/joc.5816
Dimri, A. P., Kumar, D., Choudhary, A., & Maharana, P. (2018a). Future changes over the Himalayas: Mean temperature. Global and Planetary Change, 162, 235–251. https://doi.org/10.1016/j.gloplacha.2018.01.014
Dimri, A. P., Kumar, D., Choudhary, A., & Maharana, P. (2018b). Future changes over the Himalayas: Maximum and minimum temperature. Global and Planetary Change, 162, 212–234. https://doi.org/10.1016/j.gloplacha.2018.01.015
Dobler, A., & Ahrens, B. (2010). Analysis of the Indian summer monsoon system in the regional climate model COSMO-CLM. Journal of Geophysical Research Atmospheres, 115, D16. https://doi.org/10.1029/2009JD013497
Ebert, E. E., & McBride, J. L. (2000). Verification of precipitation in weather systems: Determination of systematic errors. Journal of Hydrology, 239(1–4), 179–202. https://doi.org/10.1016/S0022-1694(00)00343-7
Enayati, M., Bozorg-Haddad, O., Bazrafshan, J., Hejabi, S., & Chu, X. (2021). Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. Journal of Water and Climate Change, 12(2), 401–419. https://doi.org/10.2166/wcc.2020.261
Fowler, H. J., Blenkinsop, S., & Tebaldi, C. (2007). Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology A Journal of the Royal Meteorological Society, 27(12), 1547–1578. https://doi.org/10.1002/joc.1556
Ghimire, S., Choudhary, A., & Dimri, A. P. (2018). Assessment of the performance of CORDEX-South Asia experiments for monsoonal precipitation over the Himalayan region during present climate: Part I. Climate Dynamics, 50(7), 2311–2334. https://doi.org/10.1007/s00382-015-2747-2
Giorgi, F., Jones, C., & Asrar, G. R. (2009). Addressing climate information needs at the regional level: The CORDEX framework. World Meteorological Organization Bulletin, 58(3), 175.
Kerkhoff, C., Künsch, H. R., & Schär, C. (2012). Relations between RCMs and GCMs in the ENSEMBLES simulations. In EGU General Assembly Conference Abstracts (p. 1873).
Kulkarni, A. (2012). Weakening of Indian summer monsoon rainfall in warming environment. Theoretical and Applied Climatology, 109, 447–459. https://doi.org/10.1007/s00704-012-0591-4
Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D., & Mohanty, U. C. (2008). Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Quarterly Journal of the Royal Meteorological Society, 134(636), 1897–1910. https://doi.org/10.1002/qj.325
Kumar, D., & Dimri, A. P. (2018). Regional climate projections for Northeast India: An appraisal from CORDEX South Asia experiment. Theoretical and Applied Climatology, 134(3), 1065–1081. https://doi.org/10.1007/s00704-017-2318-z
Kumar, K. K., Patwardhan, S. K., Kulkarni, A., Kamala, K., Rao, K. K., & Jones, R. (2011). Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Current Science, 20, 312–326.
Kumar, K. N., Rajeevan, M., Pai, D. S., Srivastava, A. K., & Preethi, B. (2013). On the observed variability of monsoon droughts over India. Weather and Climate Extremes, 1, 42–50. https://doi.org/10.1016/j.wace.2013.07.006
Mallya, G., Mishra, V., Niyogi, D., Tripathi, S., & Govindaraju, R. S. (2016). Trends and variability of droughts over the Indian monsoon region. Weather and Climate Extremes, 12, 43–68. https://doi.org/10.1016/j.wace.2016.01.002
Meshram, S. G., Singh, V. P., & Meshram, C. (2017). Long-term trend and variability of precipitation in Chhattisgarh State. India. Theoretical and Applied Climatology, 129(3), 729–744. https://doi.org/10.1007/s00704-016-1804-z
Mishra, V., Kumar, D., Ganguly, A. R., Sanjay, J., Mujumdar, M., Krishnan, R., & Shah, R. D. (2014). Reliability of regional and global climate models to simulate precipitation extremes over India. Journal of Geophysical Research Atmospheres, 119(15), 9301–9323. https://doi.org/10.1002/2014JD021636
Mishra, V., Smoliak, B. V., Lettenmaier, D. P., & Wallace, J. M. (2012). A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall. Proceedings of the National Academy of Sciences, 109(19), 7213–7217. https://doi.org/10.1073/pnas.1119150109
Mohanty, U. C., Nageswararao, M. M., Sinha, P., Nair, A., Singh, A., Rai, R. K., & Dash, G. P. (2019). Evaluation of performance of seasonal precipitation prediction at regional scale over India. Theoretical and Applied Climatology, 135(3), 1123–1142. https://doi.org/10.1007/s00704-018-2421-9
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823
Nageswararao, M. M., Mohanty, U. C., Osuri, K. K., & Ramakrishna, S. S. V. S. (2016b). Prediction of winter precipitation over northwest India using ocean heat fluxes. Climate Dynamics, 47(7), 2253–2271. https://doi.org/10.1007/s00382-015-2962-x
Nageswararao, M. M., Mohanty, U. C., Ramakrishna, S. S. V. S., & Dimri, A. P. (2018). An intercomparison of observational precipitation data sets over Northwest India during winter. Theoretical and Applied Climatology, 132(1), 181–207. https://doi.org/10.1007/s00704-017-2083-z
Nageswararao, M. M., Mohanty, U. C., Ramakrishna, S. S. V. S., Nair, A., & Prasad, S. K. (2016a). Characteristics of winter precipitation over Northwest India using high-resolution gridded dataset (1901–2013). Global and Planetary Change, 147, 67–85. https://doi.org/10.1016/j.gloplacha.2016.10.017
Nageswararao, M. M., Sannan, M. C., & Mohanty, U. C. (2019a). Characteristics of various rainfall events over South Peninsular India during northeast monsoon using high-resolution gridded dataset (1901–2016). Theoretical and Applied Climatology, 137(3), 2573–2593. https://doi.org/10.1007/s00704-018-02755-y
Nageswararao, M. M., Sinha, P., Mohanty, U. C., Panda, R. K., & Dash, G. P. (2019b). Evaluation of district-level rainfall characteristics over Odisha using high-resolution gridded dataset (1901–2013). SN Applied Sciences, 1(10), 1–24. https://doi.org/10.1007/s42452-019-1234-5
Nath, R., Nath, D., Li, Q., Chen, W., & Cui, X. (2017). Impact of drought on agriculture in the Indo-Gangetic Plain. India. Advances in Atmospheric Sciences, 34(3), 335–346. https://doi.org/10.1007/s00376-016-6102-2
Pai, D. S., Rajeevan, M., Sreejith, O. P., Mukhopadhyay, B., & Satbha, N. S. (2014). Development of a new high spatial resolution (0.25× 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65(1), 1–18. https://doi.org/10.54302/mausam.v65i1.851
Pai, D. S., Sridhar, L., Badwaik, M. R., & Rajeevan, M. (2015). Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25 × 0.25) gridded rainfall data set. Climate Dynamics, 45(3), 755–776. https://doi.org/10.1007/s00382-014-2307-1
Parth Sarthi, P., Kumar, P., & Ghosh, S. (2016). Possible future rainfall over Gangetic Plains (GP), India, in multi-model simulations of CMIP3 and CMIP5. Theoretical and Applied Climatology, 124(3), 691–701. https://doi.org/10.1007/s00704-015-1447-5
Patwardhan, S., Kulkarni, A., & Sabade, S. (2016). Projected changes in semi permanent systems of Indian summer monsoon in CORDEX-SA framework. American Journal of Climate Change, 5(2), 133–146. https://doi.org/10.4236/ajcc.2016.52013
Quamar, M. F., & Bera, S. K. (2017). Pollen records related to vegetation and climate change from northern Chhattisgarh, central India during the late Quaternary. Palynology. https://doi.org/10.1080/01916122.2015.1077172
Rajeevan, M., & Nanjundiah, R. S. (2009). Coupled model simulations of twentieth century climate of the Indian summer monsoon. Platinum Jubilee Special Volume of the Indian Academy of Sciences, 20, 537–568.
Rockel, B. (2015). The regional downscaling approach: A brief history and recent advances. Current Climate Change Reports, 1(1), 22–29. https://doi.org/10.1007/s40641-014-0001-3
Roxy, M. K., Ghosh, S., Pathak, A., Athulya, R., Mujumdar, M., Murtugudde, R., & Rajeevan, M. (2017). A threefold rise in widespread extreme rain events over central India. Nature Communications, 8(1), 1–11. https://doi.org/10.1038/s41467-017-00744-9
Sahany, S., Venugopal, V., & Nanjundiah, R. S. (2010). The 26 July 2005 heavy rainfall event over Mumbai: Numerical modeling aspects. Meteorology and Atmospheric Physics, 109(3), 115–128. https://doi.org/10.1007/s00703-010-0099-3
Sannan, M. C., Nageswararao, M. M., & Mohanty, U. C. (2020). Performance evaluation of CORDEX-South Asia simulations and future projections of northeast monsoon rainfall over south peninsular India. Meteorology and Atmospheric Physics, 132(5), 743–770. https://doi.org/10.1007/s00703-019-00716-2
Seenirajan, M., Natarajan, M., Thangaraj, R., & Bagyaraj, M. (2017). Study and analysis of Chennai flood 2015 using GIS and multicriteria technique. Journal of Geographic Information System, 9(02), 126. https://doi.org/10.4236/jgis.2017.92009
Sharma, S., & Singh, P. K. (2017). Long term spatiotemporal variability in rainfall trends over the state of Jharkhand, India. Climate, 5(1), 18. https://doi.org/10.3390/cli5010018
Sharmila, S., Joseph, S., Sahai, A. K., Abhilash, S., & Chattopadhyay, R. (2015). Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Global and Planetary Change, 124, 62–78. https://doi.org/10.1016/j.gloplacha.2014.11.004
Singh, A., Sahoo, R. K., Nair, A., Mohanty, U. C., & Rai, R. K. (2017). Assessing the performance of bias correction approaches for correcting monthly precipitation over India through coupled models. Meteorological Applications, 24(3), 326–337. https://doi.org/10.1002/met.1627
Slater, A. G., & Lawrence, D. M. (2013). Diagnosing present and future permafrost from climate models. Journal of Climate, 26(15), 5608–5623. https://doi.org/10.1175/JCLI-D-12-00341.1
Sunyer, M. A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., & Yücel, I. (2015). Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrology and Earth System Sciences, 19(4), 1827–1847. https://doi.org/10.5194/hess-19-1827-2015
Swain, M., Pattanayak, S., & Mohanty, U. C. (2018). Characteristics of occurrence of heavy rainfall events over Odisha during summer monsoon season. Dynamics of Atmospheres and Oceans, 82, 107–118. https://doi.org/10.1016/j.dynatmoce.2018.05.004
Tang, J., Niu, X., Wang, S., Gao, H., Wang, X., & Wu, J. (2016). Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. Journal of Geophysical Research Atmospheres, 121(5), 2110–2129. https://doi.org/10.1002/2015JD023977
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Tesfaye, K., Aggarwal, P. K., Mequanint, F., Shirsath, P. B., Stirling, C. M., Khatri-Chhetri, A., & Rahut, D. B. (2017). Climate variability and change in Bihar, India: Challenges and opportunities for sustainable crop production. Sustainability, 9(11), 1998. https://doi.org/10.3390/su9111998
Wang, Y., Leung, L. R., McgregoR, J. L., Lee, D. K., Wang, W. C., Ding, Y., & Kimura, F. (2004). Regional climate modeling: Progress, challenges, and prospects. Journal of the Meteorological Society of Japan, Ser. II, 82(6), 1599–1628. https://doi.org/10.2151/jmsj.82.1599
Warwade, P., Tiwari, S., Ranjan, S., Chandniha, S. K., & Adamowski, J. (2018). Spatio-temporal variation of rainfall over Bihar State, India. Journal of Water and Land Development. https://doi.org/10.2478/jwld-2018-0018
Wehner, M. F., Smith, R. L., Bala, G., & Duffy, P. (2010). The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Climate Dynamics, 34(2), 241–247. https://doi.org/10.1007/s00382-009-0656-y
Wilby, R. L., & Wigley, T. M. (1997). Downscaling general circulation model output: A review of methods and limitations. Progress in Physical Geography, 21(4), 530–548.
Acknowledgements
This research is the outcome of a research project entitled “Study of the Effects of Climate Change on Hydro-meteorological Processes: Droughts and Floods at Different Spatial and Temporal Scales in Eastern India” at IIT Bhubaneswar, sponsored by the Department of Science and Technology, Government of India. Authors duly acknowledge the India Meteorological Department (IMD) for providing a high-resolution gridded analysis dataset. The authors also thank the Climate Data Portal at the Center for Climate Change Research (CCCR), Indian Institute of Tropical Meteorology, India, for providing CORDEX-SA data. The authors are also very appreciative of the anonymous reviewers for providing valuable suggestions and comments that helped improve the quality of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Barde, V., Nageswararao, M.M., Mohanty, U.C. et al. Performance of the CORDEX-SA Regional Climate Models in Simulating Summer Monsoon Rainfall and Future Projections over East India. Pure Appl. Geophys. 180, 1121–1142 (2023). https://doi.org/10.1007/s00024-022-03225-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00024-022-03225-3